正在加载图片...
(terminal 1). The electric double layers(between terminals 1 and compare well with other flexible energy-storage devices re- 3)in the supercapacitor can be discharged later in the supera- ported(12 ). The robust integrated thin-film structure allows not pacitor mode. Hence the device acts as both supercapacitor and only good electrochemical performance but also the ability to attery, a true hybrid, in comparison to the conventional hybrid function over large ranges of mechanical deformation and shown record temperatures and with a wide variety of electrolytes Conclusion These selfstanding flexible paper devices can result in unprec dented design ingenuity, aiding in new forms of cost-effective o conclude, we have demonstrated the design, fabrication, and energy storage devices that would occupy minimum space and packaging of flexible CNT-cellulose-RTIL nanocomposite adapt to stringent shape and space requirements sheets, which can be used in configuring energy-storage devices such as supercapacitors, Li-ion batteries, and hybrids. The We acknowledge funding support from the New York State intimate configuration of CNT, cellulose, and RTIL in cellulose Science, Technology, and Academic Research(NYSTAR) help in the efficient packaging, operation, and handling of these National Science Foundation-funded Nanoscale Science and devices. The discharge capacity and performance observed here ing Center on directed assembly of nanostructures I Sugimoto W, Yokoshima K, Ohuchi K, Murakami Y, Takasu Y(2006)J 14. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F(1999)Carbon Electrochem Soc 153- A255-A260 37:61-69 2. Nam KT, Kim Dw, Yoo PJ, Chiang CY, Meethong N. Hammond PT, Chiang 15 Frackowiak E, Metenier K, Bertagna V, Beguin F(2000)Appd Plys Left YM, Belcher AM(2006)Science 312: 885-888 77:2421-2423 BE(1999) Electrochemical Capaci ntific Fundamentals and 16. Frackowiak E (2007) Phys Chem Phys 9: 1774-178 Technological Applications(Kluwer, Dordrecht, The Netherlands). elton T(1999) Chen Rev 99 4. Burke A(2000)J Power Sources 91: 37- 18. Swatloski RP, Spear SK, Holbrey JD, Rogers RD(2002)J Am Chem Soc 5. Tarascon JM, Armand M(2001)Nature 414:359-367. 124:4974-4975 6. Dresselhaus MS. Thomas IL(2001)Nature 414:332-337. 19. Howlett PC, MacFarlane DR, Hollenkamp AF(2004)Electrochem Solid-State 7. Arico As, Bruce P. Scrosati B, Tarascon JM, Van Schalkwijk w(2005)Nat e7:A97-A101 Matr4:366-377 20. Kim YJ, Matsuzawa Y, Ozakis, Park KC, Kim C Endo M, Yoshida H. Masuda 8. Hammami A, Raymor G, Sato T, Dresselhaus MS(2005)J Electrochem Soc 152: A710-A71 9. Rose MF, Johnson C, Owens T, Stephens B(1994) Sources 21. Mu 47:303-312. J Biomed Malr ousa s vijayaraghavan A, Ajayan PM, Linhardt RJ(2006) 10. Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997)Appl Plys Lett 22. Conway BE, Pell wG(2003)J Solid State Electrochem 7: 637-644. 23. Lee KB (2005)J Micromech Microeng 15: 5210-S214 11. Wu GT, Weng CS. Zhang XB, Yang HS, Oi ZF, He PM, Li WZ(1999)J 24. Sato K (1977) Rev Physiol Biochem Pharmaco! 79: 51-13 Electrochem Soc 146: 1696-1701 25. Nelson PA, Owen JR(2003)J Electrochem Soc 150: A1313-A1317. 12. Che GL, Lakshmi BB, Fisher ER. Martin CR(199S)Nature 393: 346-349. 26. Amatucci GG, Badway F, Pasquier AD. Zheng T(2001)J Electrochem Soc 13. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K. 148:A930-A93 Dresselhaus MS(2001)Carbon 39: 1287-1297 27. Anani AA, Wu H, Lian KK(2000)US Patent 6. 117-585. et a PNAs| August21.2007|vol.104|no.34|13577(terminal 1). The electric double layers (between terminals 1 and 3) in the supercapacitor can be discharged later in the superca￾pacitor mode. Hence the device acts as both supercapacitor and battery, a true hybrid, in comparison to the conventional hybrid shown in Fig. 4a. Conclusion To conclude, we have demonstrated the design, fabrication, and packaging of flexible CNT–cellulose–RTIL nanocomposite sheets, which can be used in configuring energy-storage devices such as supercapacitors, Li-ion batteries, and hybrids. The intimate configuration of CNT, cellulose, and RTIL in cellulose help in the efficient packaging, operation, and handling of these devices. The discharge capacity and performance observed here compare well with other flexible energy-storage devices re￾ported (12). The robust integrated thin-film structure allows not only good electrochemical performance but also the ability to function over large ranges of mechanical deformation and record temperatures and with a wide variety of electrolytes. These selfstanding flexible paper devices can result in unprec￾edented design ingenuity, aiding in new forms of cost-effective energy storage devices that would occupy minimum space and adapt to stringent shape and space requirements. We acknowledge funding support from the New York State Office of Science, Technology, and Academic Research (NYSTAR) and the National Science Foundation-funded Nanoscale Science and Engineer￾ing Center on directed assembly of nanostructures. 1. Sugimoto W, Yokoshima K, Ohuchi K, Murakami Y, Takasu Y (2006) J Electrochem Soc 153:A255–A260. 2. Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Science 312:885–888. 3. Conway BE (1999) Electrochemical Capacitors: Scientific Fundamentals and Technological Applications (Kluwer, Dordrecht, The Netherlands). 4. Burke A (2000) J Power Sources 91:37–50. 5. Tarascon JM, Armand M (2001) Nature 414:359–367. 6. Dresselhaus MS, Thomas IL (2001) Nature 414:332–337. 7. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nat Mater 4:366–377. 8. Hammami A, Raymond N, Armand M (2003) Nature 424:635–636. 9. Rose MF, Johnson C, Owens T, Stephens B (1994) J Power Sources 47:303–312. 10. Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480–1482. 11. Wu GT, Weng CS, Zhang XB, Yang HS, Qi ZF, He PM, Li WZ (1999) J Electrochem Soc 146:1696–1701. 12. Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Nature 393:346–349. 13. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Carbon 39:1287–1297. 14. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Carbon 37:61–69. 15. Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Appl Phys Lett 77:2421–2423. 16. Frackowiak E (2007) Phys Chem Phys 9:1774–1785. 17. Welton T (1999) Chem Rev 99:2071–2083. 18. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) J Am Chem Soc 124:4974–4975. 19. Howlett PC, MacFarlane DR, Hollenkamp AF (2004) Electrochem Solid-State Lett 7:A97–A101. 20. Kim YJ, Matsuzawa Y, Ozaki S, Park KC, Kim C, Endo M, Yoshida H, Masuda G, Sato T, Dresselhaus MS (2005) J Electrochem Soc 152:A710–A715. 21. Murugesan S, Mousa S, Vijayaraghavan A, Ajayan PM, Linhardt RJ (2006) J Biomed Mater Res B 79B:298–304. 22. Conway BE, Pell WG (2003) J Solid State Electrochem 7:637–644. 23. Lee KB (2005) J Micromech Microeng 15:S210–S214. 24. Sato K (1977) Rev Physiol Biochem Pharmacol 79:51–131. 25. Nelson PA, Owen JR (2003) J Electrochem Soc 150:A1313–A1317. 26. Amatucci GG, Badway F, Pasquier AD, Zheng T (2001) J Electrochem Soc 148:A930–A939. 27. Anani AA, Wu H, Lian KK (2000) US Patent 6,117,585. Pushparaj et al. PNAS  August 21, 2007  vol. 104  no. 34  13577 ENGINEERING
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有