正在加载图片...
运筹学讲义 (M→0),故仍采用p(A|B2)=1-p(4B1)-p(A|B3)来求解p(A|B2)! 由全概率公式有 Pn (t+Ar)=P(A)=P(B,P(AI B,)+P(B,(A1 B2)+P(BP(AlB,) Pn=1(D)[△t+o(△t)+pn()[1-(+p)△t+0(△n)+Pn+1(1)[4△t+o(△) Mt·Pn1()+[1-(4+)△小Pn(1)+HMt·Pn1()+Pn1(D)+Pn(t)+Pn+1()]o(△) =2Mt·Pn1(D+-(+)△小]Pn(D)+M.Pn+1(1)+o(△)(1) 于是, Pn(t+△)-pn()Mtpn-1(D)+[1-(+p)A]Pn(1)+H△t·Pn1(t)+0(△)-Pn() Mr·Pn1()-(+山)M·Pn()+M·Pa+1()+o(Ar) =Apn()-(2+)Pn()+uPn()+4 dp,(t t+△)-Pn(1) lim[apn-(0)-(1+p,(0)+upn+(0)+ O(Ar) =lmPn1(1)-(2+p)P()+Hp1()+mO(△n) M→0 =Apn1(1)-(4+4)pn()+HPn+1(t)+0 =Apn1(1)-(2+)pn()+Pn+1(1),n≥1(2) 当n=0时,A={在时刻t+M时,排队系统内有0个顾客} B1={在时刻t时,排队系统内有-1个顾客}=d B2={在时刻t时,排队系统内有0个顾客}, B3={在时刻t时,排队系统内有1个顾客}, 则p(B1)=p(①)=0,P(B2)=P0(1),P(B3)=P1():p(AB1)=p()=0 p(A|B3)=p{在时刻t+M时,排队系统内有0个顾客|在时刻t时,排队系统内有1个顾客} =p{在时间[t,t+△]内,无顾客到达,有1个顾客接受完服务后离开}运 筹 学 讲 义 4 ( t →0 ),故仍采用 ( | ) 1 ( | ) ( | ) p A B2 = − p A B1 − p A B3 来求解 ( | ) p A B2 ! 由全概率公式有 ( ) [1 ( ) ] ( ) ( ) ( ) (1) ( ) [1 ( ) ] ( ) ( ) [ ( ) ( ) ( )] ( ) ( ) [ ( )] ( ) [1 ( ) ( )] ( ) [ ( )] ( ) ( ) ( ) ( | ) ( ) ( | ) ( ) ( | ) 1 1 1 1 1 1 1 1 1 1 2 2 3 3 t p t t p t t p t o t t p t t p t t p t p t p t p t o t p t t o t p t t o t p t t o t p t t p A p B p A B p B p A B p B p A B n n n n n n n n n n n n n =   + − +   +   +  =   + − +   +   + + +   =   +  +  − +  +  +   +  +  = = + + − + − + − + − +             于是, t o t p t p t p t t t p t t p t t p t o t t t p t t p t t p t o t p t t p t t p t n n n n n n n n n n n n   = − + + +    − +   +   +  =    + − +   +   +  − =  +  − − + − + − + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [1 ( ) ] ( ) ( ) ( ) ( ) 1 1 1 1 1 1             ( ) ( ) ( ) ( ), 1 (2) ( ) ( ) ( ) ( ) 0 ( ) lim [ ( ) ( ) ( ) ( )] lim ] ( ) lim [ ( ) ( ) ( ) ( ) ( ) ( ) lim ( ) 1 1 1 1 0 1 1 0 1 1 0 0 = − + +  = − + + +   = − + + +   = − + + +  +  − = − + − +  → − +  → − +  →  → p t p t p t n p t p t p t t o t p t p t p t t o t p t p t p t t p t t p t dt dp t n n n n n n t n n n t n n n t n n t n                 当 n = 0 时, A = { 在时刻 t + t 时,排队系统内有 0 个顾客 } , B1 = { 在时刻 t 时,排队系统内有 −1 个顾客 } =  , B2 = { 在时刻 t 时,排队系统内有 0 个顾客 } , B3 = { 在时刻 t 时,排队系统内有 1 个顾客 } , 则 p(B1 ) = p() = 0, ( ) ( ) 2 0 p B = p t , ( ) ( ) 3 1 p B = p t ; p(A| B1 ) = p() = 0 ; ( | ) { p A B3 = p 在时刻 t + t 时,排队系统内有 0 个顾客|在时刻 t 时,排队系统内有 1 个顾客 } = p{ 在时间 [t,t + t] 内,无顾客到达,有 1 个顾客接受完服务后离开 }
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有