正在加载图片...
工程科学学报.第42卷.第3期:358-364.2020年3月 Chinese Journal of Engineering,Vol.42,No.3:358-364,March 2020 https://doi.org/10.13374/j.issn2095-9389.2019.10.09.006;http://cje.ustb.edu.cn 3D打印锂离子电池正极的制备及性能 左文婧),屈银虎四,祁攀虎,符寒光》,王钰凡”,高浩斐”,张红” 1)西安工程大学材料工程学院,西安7100482)北京工业大学材料科学与工程学院.北京100022 通信作者,E-mail:quyinhu@xpu.edu.cn 摘要采用挤出式3D打印技术制备锂离子电池电极,选取三元镍钴锰酸锂(LNio.Co.2Ma.:O2)作为正极活性材料,以去 离子水、羟乙基纤维素和其他添加剂为溶剂来制备性能稳定且适合3D打印技术的锂离子电池正极墨水,利用流变仪、X射 线衍射仪、电池测试仪、ANSYS模拟等探究了增稠剂种类和含量、墨水黏度、打印工艺等对墨水流变性质和可打印性能的 影响.结果表明:选取羟乙基纤维素/羟丙基纤维素质量比为1:1混合且质量分数为3%时,所制备的墨水黏度为20.26Pas. 此时墨水具有较好的流变性,打印过程出墨均匀,打印电极光滑平整,满足后期墨水的可打印性要求,经模拟分析,墨水黏度 对墨水流动性影响明显:电极材料经超声分散、打印、烧结等过程后未造成原有晶体结构的改变:电极首次充放电容量分别 为226.5和119.4mAhg',经过20次循环后,电池充放电容量的变化率减小并趋于稳定,3D打印电极表现出良好的循环稳 定性. 关键词锂离子电池:三元材料:打印墨水:增稠剂:流变性 分类号TM504 Preparation and performance of 3D-printed positive electrode for lithium-ion battery ZUO Wen-jing.QU Yin-hu.QI Pan-hu).FU Han-guang.WANG Yu-fan.GAO Hao-fe,ZHANG Hong 1)School of Materials Science Engineering,Xi'an Polytechnic University,Xi'an 710048,China 2)College of Materials Science and Engineering,Beijing University of Technology,Beijing 100022,China Corresponding author,E-mail:quyinhu@xpu.edu.cn ABSTRACT Miniaturized batteries are widely utilized in microscale devices,and 3D printing technology has great advantages in the manufacture of miniaturized battery electrodes.Lithium-nickel-cobalt-manganate material (LiNio sCoo2Mno 302)is gradually becoming a mainstream cathode material for lithium-ion batteries due to its high energy density,high rate of performance,high stability,and low cost.In this study,we prepared lithium-ion-battery electrodes using extrusion-based three-dimensional (3D)printing technology,and we selected ternary nickel-cobalt-manganese hydride as the positive active material.Subsequently,using deionized water,hydroxyethyl cellulose,and other additives,positive inks was prepared for the lithium-ion battery that exhibited stable performance and adequate 3D printing.The effects of thickener type and content,ink viscosity,and the printing process on the rheological properties and printability of the ink were investigated using a rheometer,X-ray diffraction,a battery tester,and ANSYS simulation analysis.The results show that when the mass ratio of hydroxyethyl cellulose/hydroxypropyl cellulose is 1:I and the mass fraction is3%,the viscosity of the prepared ink is 20.26 Pa-s,and it shows good rheology and uniformity in printing.At present,the printing electrode has good rheology,steady ink outflow,and a smooth surface,which satisfies the printability requirements of the ink.Additionally,the simulation results show that the fluidity of the ink is significantly influenced by its viscosity.The electrode preparation process,e.g.,ultrasonic dispersion,printing,or sintering,does not lead to a change in the crystal structure of the electrode material.The first-charge and discharge capacities of the 收稿日期:2019-10-09 基金项目:陕西省科学技术研究发展计划-工业攻关资助项目(2013K09-33):西安市科技计划资助项目(CXY1517(3),2017074CG/RC03/ XAGC002,2017074CG/RC03XAGC007):陕西省重点研发计划资助项目(2018GY-130)3D 打印锂离子电池正极的制备及性能 左文婧1),屈银虎1) 苣,祁攀虎1),符寒光2),王钰凡1),高浩斐1),张    红1) 1) 西安工程大学材料工程学院,西安 710048    2) 北京工业大学材料科学与工程学院,北京 100022 苣通信作者,E-mail:quyinhu@xpu.edu.cn 摘    要    采用挤出式 3D 打印技术制备锂离子电池电极,选取三元镍钴锰酸锂(LiNi0.5Co0.2Mn0.3O2)作为正极活性材料,以去 离子水、羟乙基纤维素和其他添加剂为溶剂来制备性能稳定且适合 3D 打印技术的锂离子电池正极墨水,利用流变仪、X 射 线衍射仪、电池测试仪、ANSYS 模拟等探究了增稠剂种类和含量、墨水黏度、打印工艺等对墨水流变性质和可打印性能的 影响. 结果表明:选取羟乙基纤维素/羟丙基纤维素质量比为 1∶1 混合且质量分数为 3% 时,所制备的墨水黏度为 20.26 Pa·s, 此时墨水具有较好的流变性,打印过程出墨均匀,打印电极光滑平整,满足后期墨水的可打印性要求,经模拟分析,墨水黏度 对墨水流动性影响明显;电极材料经超声分散、打印、烧结等过程后未造成原有晶体结构的改变;电极首次充放电容量分别 为 226.5 和 119.4 mA·h·g−1,经过 20 次循环后,电池充放电容量的变化率减小并趋于稳定,3D 打印电极表现出良好的循环稳 定性. 关键词    锂离子电池;三元材料;打印墨水;增稠剂;流变性 分类号    TM504 Preparation and performance of 3D-printed positive electrode for lithium-ion battery ZUO Wen-jing1) ,QU Yin-hu1) 苣 ,QI Pan-hu1) ,FU Han-guang2) ,WANG Yu-fan1) ,GAO Hao-fei1) ,ZHANG Hong1) 1) School of Materials Science & Engineering, Xi’an Polytechnic University, Xi’an 710048, China 2) College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022, China 苣 Corresponding author, E-mail: quyinhu@xpu.edu.cn ABSTRACT    Miniaturized batteries are widely utilized in microscale devices, and 3D printing technology has great advantages in the manufacture of miniaturized battery electrodes. Lithium–nickel–cobalt–manganate material (LiNi0.5Co0.2Mn0.3O2 ) is gradually becoming a mainstream cathode material for lithium-ion batteries due to its high energy density, high rate of performance, high stability, and low cost. In this study, we prepared lithium-ion-battery electrodes using extrusion-based three-dimensional (3D) printing technology, and we selected ternary nickel –cobalt –manganese hydride as the positive active material. Subsequently, using deionized water, hydroxyethyl cellulose, and other additives, positive inks was prepared for the lithium-ion battery that exhibited stable performance and adequate 3D printing. The effects of thickener type and content, ink viscosity, and the printing process on the rheological properties and printability of the ink were investigated using a rheometer, X-ray diffraction, a battery tester, and ANSYS simulation analysis. The results show that when the mass ratio of hydroxyethyl cellulose/hydroxypropyl cellulose is 1∶1 and the mass fraction is 3%, the viscosity of the prepared ink is 20.26 Pa·s, and it shows good rheology and uniformity in printing. At present, the printing electrode has good rheology, steady ink outflow, and a smooth surface, which satisfies the printability requirements of the ink. Additionally, the simulation results show that the fluidity of the ink is significantly influenced by its viscosity. The electrode preparation process, e.g., ultrasonic dispersion, printing, or sintering, does not lead to a change in the crystal structure of the electrode material. The first-charge and discharge capacities of the 收稿日期: 2019−10−09 基金项目: 陕西省科学技术研究发展计划−工业攻关资助项目(2013K09-33);西安市科技计划资助项目(CXY1517(3),2017074CG/RC03/ XAGC002,2017074CG/RC03/XAGC007);陕西省重点研发计划资助项目(2018GY-130) 工程科学学报,第 42 卷,第 3 期:358−364,2020 年 3 月 Chinese Journal of Engineering, Vol. 42, No. 3: 358−364, March 2020 https://doi.org/10.13374/j.issn2095-9389.2019.10.09.006; http://cje.ustb.edu.cn
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有