TablCompf1.. :: References 网w59cAgo 司n ASIGORAP C时 a知dn6k,a 11Table 3: Comparison of subdivision depthes, λ = 1, 2, 3 n 3 4 5 6 7 8 9 10 C1(n) 6 5 8 3 12 14 15 16 C2(n) 4 5 7 3 10 10 11 12 C3(n) 4 5 7 3 9 9 10 10 References [1] Loop, C.T.: Smooth Subdivision Surfaces Based on Triangles. M.S. Thesis, Department of Mathematics, University of Utah (1987) [2] Lanquetin, S., and Neveu, M.: A priori computation of the number of surface subdivision levels. In: Proceedings of International Conference on Computer Graphics and Vision 2004 (Graphicon’2004) (2004) 87–94 [3] Wang, H., Sun, H., and Qin, K.: Estimating recursion depth for Loop subdivision. International Journal of CAD/CAM 4:1 (2004) 11–18 [4] Wu, X., and Peters, J.: Interference detection for subdivision surfaces. Computer Graphics Forum, Eurographics 2004 23:3 (2004) 577–585 [5] Wu, X., and Peters, J.: An Accurate Error Measure for Adaptive Subdivision Surfaces. In: Proceedings of International Conference on Shape Modeling and Applications 2005 (SMI’05) (2005) 51–56 [6] Stam, J.: Evaluation of Loop Subdivision Surfaces. In: Subdivision for Modeling and Anamation, SIGGRAPH 1999 Course Notes (1999) [7] Lai, M.J.: Fortran Subroutines For B-Nets of Box Splines on Three- and Four-Directional Meshes. Numerical Algorithms, 2 (1992) 33–38 [8] Farin, G.: Curves and Surfaces for CAGD — A Practical Guide, 5th Edition. Morgan Kaufmann Publishers, San Francisco (2002) [9] Huang, Z., and Wang, G.: Improved error estimate for extraordinary Catmull-Clark subdivision surface patches. The Visual Computer, 23:12 (2007) 1005–1014 11