闫祺等:基于改进差分进化算法的加热炉调度方法 431· 待时间,成为了加热炉能耗高的主要矛盾,应设法 [5]Tu N W,Luo X C.Chai T Y.Scheduling of walking beam 降低所有钢坯的炉前等待时间提升钢坯的平均入 reheating fumaces based on ant colony optimization algorithm.J 炉温度.反之,当4>1.51或2<0.036时,加热炉燃 Northeast Uniy Nat Sci,2011,32(1):1 (屠乃威,罗小川,柴天佑.基于蚁群优化算法的步进式加热炉 耗随着山的增大先增大后趋于稳定,随着?的增 调度.东北大学学报:自然科学版,2011,32(1):1) 大而减小,这表明在此情形下,钢坯在炉内的停留 [6] Li T K,Wang B L.Zhao Y Y.Three-stage algorithm for the 时间过长成了主要矛盾,应设法加快钢坯在加热 scheduling problem of parallel reheating furnaces.Syst Eng. 炉区间的生产节奏 2011,26(1):105 (李铁克,王柏琳,赵艳艳.求解并行加热炉群调度问题的三阶 5结论 段算法.系统工程学报,2011,26(1):105) [7]Ilmer Q.Haeussler S,Missbauer H.Optimal synchronization of (1)以加热炉燃料消耗量最小为优化目标,建 the hot rolling stage in steel production.IFAC-PapersOnLine, 立了加热炉区生产调度数学模型,选用自适应差 2019,52(13):1615 分进化算法搭配禁忌搜索算法对问题进行求解 [8]Chen D M.Lu B.Zhang X H,et al.Fluctuation characteristic of 为了探究加热炉燃料消耗量的影响因素,提出了两 billet region gas consumption in reheating fumnace based on energy 个衡量钢坯炉前等待和炉内生产两部分时间同理 apportionment model.App/Therm Eng,2018,136:152 想生产时间匹配程度的评价参数山和2 [9]Liu Q.Liu Q,Yang J P,et al.Progress of research on (2)九组算例的模拟结果表明:本文提出的改 steelmaking -continuous casting production scheduling.ChinJ Eg,2020,42(2):144 进自适应差分进化算法的性能优于经典差分进化 (刘青,刘倩,杨建平,等.炼钢-连铸生产调度的研究进展.工程 算法:以燃料消耗量最小为目标进行优化调度理 科学学报,2020,42(2):144) 论上可比其他目标降低能耗8.7%至20% [10]Zhu G J,Zeng H,Ruan K J,et al.Basis of Metallurgical Thermal (3)山1和同能耗的敏感性分析表明,当连铸 Engineering.Beijing:Metallurgical Industry Press,2007 坯到达节奏与热轧出坯节奏之比由0.5增至 (朱光俊,曾红,阮开军,等.治金热工基础.北京:冶金工业出版 2时,燃料消耗量对两参数的敏感性由强变弱.且 社,2007) 当(≤1时,降低?比降低山更能有效降低加热炉 [11]Chen D M,Lu B,Dai F Q,et al.Bottleneck of slab thermal efficiency in reheating fumace based on energy apportionment 能耗. model.Energy,2018,150:1058 (4)通过对本文算例1的模拟计算发现,当1 [12]Yu Z X.Hot Transfer and Hot Charging Technology of 时,其最优调度方案所需燃料消耗量为32374m3, Continous Casting Billet.Beijing:Metallurgical Industry Press, 此时41为1.51,2为0.036.对于其他调度方案,当 2002 其4<1.51或2>0.036时,燃料消耗量随1的减小 (余志祥.连铸坯热送热装技术.北京:治金工业出版社,2002) 而增大,随2的减小而减小.反之,燃料消耗量随 [13]Cai Y H.Design and Application on Optimization of Energy- 着山的增大先增大后趋于稳定,随着?2的增大而 Saving in Steel Rolling Heating Process[Dissertation].Harbin: Harbin Institute of Technology,2016 减小 (柴艳红.钢铁连轧加热工序的节能优化方案设计与应用[学位 论文].哈尔滨:哈尔滨工业大学,2016) 参考文献 [14]Yin R Y.Metallurgical Process Engineering.2nd Ed.Beijing: [1]Ma S H,Wen Z G,Chen J N,et al.Mode of circular economy in Metallurgical Industry Press,2009 China's iron and steel industry:a case study in Wu'an city.Clean (殷瑞钰.治金流程工程学.2版.北京:治金工业出版社,2009) Prod.2014.64:505 [15]Xia Q.Operation and Scheduling of Reheating Furnace [2]Lu B,Chen G,Chen D M,et al.An energy intensity optimization Production Process based on Differential Evolution model for production system in iron and steel industry.App/Therm Algorithm[Dissertation].Shenyang:Northeastern University,2010 Eng,2016,100:285 (夏琼.基于差分进化算法的加热炉生产过程操作调度[学位论 [3]Tang L X,Ren H Z,Yang Y.Reheat furnace scheduling with 文].沈阳:东北大学,2010) energy consideration.Int J Prod Res,2015.53(6):1642 [16]Bilal,Pant M,Zaheer H,et al.Differential evolution:A review of [4]Yang Y J,Jiang Z Y,Zhang XX.Model and algorithm of furnace more than two decades of research.Eng Appl Artif Intell,2020,90: area production scheduling in slab hot rolling.J Univ Sci Technol 103479 Beijing,2012,34(7:841 [17]Marcic T,Stumberger B,Stumberger G.Differential-evolution- (杨业建,姜泽毅,张欣欣.钢坯热轧加热炉区生产调度模型与 based parameter identification of a line-start IPM synchronous 算法.北京科技大学学报,2012,34(7):841) motor.IEEE Trans Ind Electron,2014.61(11):5921待时间,成为了加热炉能耗高的主要矛盾,应设法 降低所有钢坯的炉前等待时间提升钢坯的平均入 炉温度. 反之,当 μ1>1.51 或 μ2<0.036 时,加热炉燃 耗随着 μ1 的增大先增大后趋于稳定,随着 μ2 的增 大而减小,这表明在此情形下,钢坯在炉内的停留 时间过长成了主要矛盾,应设法加快钢坯在加热 炉区间的生产节奏. 5 结论 (1)以加热炉燃料消耗量最小为优化目标,建 立了加热炉区生产调度数学模型,选用自适应差 分进化算法搭配禁忌搜索算法对问题进行求解. 为了探究加热炉燃料消耗量的影响因素,提出了两 个衡量钢坯炉前等待和炉内生产两部分时间同理 想生产时间匹配程度的评价参数 μ1 和 μ2 . (2)九组算例的模拟结果表明:本文提出的改 进自适应差分进化算法的性能优于经典差分进化 算法;以燃料消耗量最小为目标进行优化调度理 论上可比其他目标降低能耗 8.7% 至 20%. (3)μ1 和 μ2 同能耗的敏感性分析表明,当连铸 坯到达节奏与热轧出坯节奏之 比 ζ 由 0.5 增 至 2 时,燃料消耗量对两参数的敏感性由强变弱. 且 当 ζ≤1 时,降低 μ2 比降低 μ1 更能有效降低加热炉 能耗. (4)通过对本文算例 1 的模拟计算发现,当 ζ=1 时,其最优调度方案所需燃料消耗量为 32374 m 3 , 此时 μ1 为 1.51,μ2 为 0.036. 对于其他调度方案,当 其 μ1<1.51 或 μ2>0.036 时,燃料消耗量随 μ1 的减小 而增大,随 μ2 的减小而减小. 反之,燃料消耗量随 着 μ1 的增大先增大后趋于稳定,随着 μ2 的增大而 减小. 参 考 文 献 Ma S H, Wen Z G, Chen J N, et al. Mode of circular economy in China’s iron and steel industry: a case study in Wu’an city. J Clean Prod, 2014, 64: 505 [1] Lu B, Chen G, Chen D M, et al. An energy intensity optimization model for production system in iron and steel industry. Appl Therm Eng, 2016, 100: 285 [2] Tang L X, Ren H Z, Yang Y. Reheat furnace scheduling with energy consideration. Int J Prod Res, 2015, 53(6): 1642 [3] Yang Y J, Jiang Z Y, Zhang X X. Model and algorithm of furnace area production scheduling in slab hot rolling. J Univ Sci Technol Beijing, 2012, 34(7): 841 (杨业建, 姜泽毅, 张欣欣. 钢坯热轧加热炉区生产调度模型与 算法. 北京科技大学学报, 2012, 34(7):841) [4] Tu N W, Luo X C, Chai T Y. Scheduling of walking beam reheating furnaces based on ant colony optimization algorithm. J Northeast Univ Nat Sci, 2011, 32(1): 1 (屠乃威, 罗小川, 柴天佑. 基于蚁群优化算法的步进式加热炉 调度. 东北大学学报: 自然科学版, 2011, 32(1):1) [5] Li T K, Wang B L, Zhao Y Y. Three-stage algorithm for the scheduling problem of parallel reheating furnaces. J Syst Eng, 2011, 26(1): 105 (李铁克, 王柏琳, 赵艳艳. 求解并行加热炉群调度问题的三阶 段算法. 系统工程学报, 2011, 26(1):105) [6] Ilmer Q, Haeussler S, Missbauer H. Optimal synchronization of the hot rolling stage in steel production. IFAC-PapersOnLine, 2019, 52(13): 1615 [7] Chen D M, Lu B, Zhang X H, et al. Fluctuation characteristic of billet region gas consumption in reheating furnace based on energy apportionment model. Appl Therm Eng, 2018, 136: 152 [8] Liu Q, Liu Q, Yang J P, et al. Progress of research on steelmaking ‒continuous casting production scheduling. Chin J Eng, 2020, 42(2): 144 (刘青, 刘倩, 杨建平, 等. 炼钢‒连铸生产调度的研究进展. 工程 科学学报, 2020, 42(2):144) [9] Zhu G J, Zeng H, Ruan K J, et al. Basis of Metallurgical Thermal Engineering. Beijing: Metallurgical Industry Press, 2007 (朱光俊, 曾红, 阮开军, 等. 冶金热工基础. 北京: 冶金工业出版 社, 2007) [10] Chen D M, Lu B, Dai F Q, et al. Bottleneck of slab thermal efficiency in reheating furnace based on energy apportionment model. Energy, 2018, 150: 1058 [11] Yu Z X. Hot Transfer and Hot Charging Technology of Continuous Casting Billet. Beijing: Metallurgical Industry Press, 2002 (余志祥. 连铸坯热送热装技术. 北京: 冶金工业出版社, 2002) [12] Cai Y H. Design and Application on Optimization of EnergySaving in Steel Rolling Heating Process[Dissertation]. Harbin: Harbin Institute of Technology, 2016 (柴艳红. 钢铁连轧加热工序的节能优化方案设计与应用[学位 论文]. 哈尔滨: 哈尔滨工业大学, 2016) [13] Yin R Y. Metallurgical Process Engineering. 2nd Ed. Beijing: Metallurgical Industry Press, 2009 (殷瑞钰. 冶金流程工程学. 2版. 北京: 冶金工业出版社, 2009) [14] Xia Q. Operation and Scheduling of Reheating Furnace Production Process based on Differential Evolution Algorithm[Dissertation]. Shenyang: Northeastern University, 2010 (夏琼. 基于差分进化算法的加热炉生产过程操作调度[学位论 文]. 沈阳: 东北大学, 2010) [15] Bilal, Pant M, Zaheer H, et al. Differential evolution: A review of more than two decades of research. Eng Appl Artif Intell, 2020, 90: 103479 [16] Marcic T, Stumberger B, Stumberger G. Differential-evolutionbased parameter identification of a line-start IPM synchronous motor. IEEE Trans Ind Electron, 2014, 61(11): 5921 [17] 闫 祺等: 基于改进差分进化算法的加热炉调度方法 · 431 ·