正在加载图片...
(2) 电位=0,等电状态,实际上混凝不需要ξ电位=0,只要使Emax=0即可,此时的二电位称 为临界电位 示例:河川到海洋的出口处,由于海水中电解质的混凝作用,胶体脱稳凝聚,易形成三 角洲。 叔采一哈代法则可以适用,即:凝聚能力∝离子价数6 但该理论不能解释:1)混凝剂投加过多,混凝效果反而下降; 2)与胶粒带同样电号的聚合物或高分子混凝效果好。 这些都与胶粒的吸附力有关,绝非只来源于静电力,还来源于范得华力、氢键及共价键 力(多出现在有聚合离子或高分子物质存在时) e 滑动面 2.吸附电性中和 这种现象在水处理中出现的较多。 指胶核表面直接吸附带异号电荷的聚合离子、高分子 物质、胶粒等,来降低二电位。这一点与第1条机理不同 在铝盐混凝剂的过程中,水解的多核羟基络合物主要 起吸附电性中和作用。在水处理中由水合的AP产生的 单纯的压缩双电层作用甚微。 3.吸附架桥 指高分子物质和胶粒,以及胶粒与胶粒之间的架桥 高分子投量过少,不足以形成吸附架桥,但投加过多, 会出现“胶体保护”现象。 4.网捕或卷扫 金属氢氧化物在形成过程中对胶粒的网捕 小胶粒与大矾花发生接触凝聚 澄清池中发生的现象 根据以上机理,可以解释在不同pH条件下,铝盐可能产生的混凝机理。 pH 简单的水合铝离子起压缩双电层作用 pH=4-5多核羟基络合物起吸附电性中和 pH=6.5-75多核羟基络合物起吸附电性中和;氢氧化铝起吸附架桥、网捕10 ζ电位=0,等电状态,实际上混凝不需要ζ电位=0,只要使 Emax=0 即可,此时的ζ电位称 为临界电位。 示例:河川到海洋的出口处,由于海水中电解质的混凝作用,胶体脱稳凝聚,易形成三 角洲。 叔采-哈代法则可以适用,即:凝聚能力∝离子价数 6 但该理论不能解释:1)混凝剂投加过多,混凝效果反而下降; 2)与胶粒带同样电号的聚合物或高分子混凝效果好。 这些都与胶粒的吸附力有关,绝非只来源于静电力,还来源于范得华力、氢键及共价键 力(多出现在有聚合离子或高分子物质存在时)。 2.吸附-电性中和 这种现象在水处理中出现的较多。 指胶核表面直接吸附带异号电荷的聚合离子、高分子 物质、胶粒等,来降低ζ电位。这一点与第 1 条机理不同。 在铝盐混凝剂的过程中,水解的多核羟基络合物主要 起吸附电性中和作用。在水处理中由水合的 Al3+产生的 单纯的压缩双电层作用甚微。 3.吸附架桥 指高分子物质和胶粒,以及胶粒与胶粒之间的架桥 高分子投量过少,不足以形成吸附架桥,但投加过多, 会出现“胶体保护”现象。 4.网捕或卷扫 金属氢氧化物在形成过程中对胶粒的网捕 小胶粒与大矾花发生接触凝聚 ―――澄清池中发生的现象 根据以上机理,可以解释在不同 pH 条件下,铝盐可能产生的混凝机理。 pH<3 简单的水合铝离子起压缩双电层作用 pH=4-5 多核羟基络合物起吸附电性中和 pH=6.5-7.5 多核羟基络合物起吸附电性中和;氢氧化铝起吸附架桥、网捕
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有