准则II(单调有界准则)若数列{an}单调有界,则iman n→0 存在 其理论证明(略).从几何上说明: 若an单增,an有两种可能,即移向无穷远或无限接 近某一定点A,因an有上界M,则man存在且不超过M A 若{an}单减,{n}有两种可能,即移向负无穷远或无 限接近某一定点A,因{an}有下界M,则iman存在且不 n→0 小于M4 若{an } 单减,{an }有两种可能, 即移向负无穷远或无 限接近某一定点A, 因 {an }有下界M, 则 存在且不 小于M. M A • • • • • • • • • • 准则ІІ (单调有界准则) 若数列 {an } 单调有界, 则 lim n n a → 若 an 单增, an 有两种可能, 即移向无穷远或无限接 近某一定点A, 因 an 有上界M, 则 存在且不超过M. lim n n a → o 1 a 2 a A lim n n a → 1 a 2 a o M 其理论证明(略).从几何上说明: 存在