正在加载图片...
折叠卷曲形成复杂的球状分子结构。具有三级结构的蛋白质一般都是球蛋白,这类蛋白质的 多肽链在三维空间中沿多个方向进行盘绕折叠,形成十分紧密的近似球形的结构,分子内部 的空间只能容纳少数水分子,几乎所有的极性R基都分布在分子外表面,形成亲水的分子 外壳,而非极性的基团则被埋在分子内部,不与水接触。蛋白质分子中侧链R基团的相互 作用对稳定球状蛋白质的三级结构起着重要作用 蛋白质的四级结构指数条具有独立的三级结构的多肽链通过非共价键相互连接而成的 聚合体结构。在具有四级结构的蛋白质中,每一条具有三级结构的皑链称为亚基或亚单位, 缺少一个亚基或亚基单独存在都不具有活性。四级结构涉及亚基在整个分子中的空间排布以 及亚基之间的相互关系 维持蛋白质空间结构的作用力主要是氢键、离子键、疏水作用力和范德华力等非共价键, 又称次级键。此外,在某些蛋白质中还有二硫键,二硫键在维持蛋白质构象方面也起着重要 作用 蛋白质的空间结构取决于它的一级结构,多肽离岸主链上的氨基酸排列顺序包含了形成 复杂的三维结构(即正确的空间结构)所需要的全部信息。 (四)蛋白质结构与功能的关系 不同的蛋白质,由于结构不同而具有不同的生物学功能。蛋白质的生物学功能是蛋白质 分子的天然构象所具有的性质,功能与结构密切相关。 1.一级结构与功能的关系 蛋白质的一级结构与蛋白质功能有相适应性和统一性,可从以下几个方面说明 1)一级结构的变异与分子病 蛋白质中的氨基酸序列与生物功能密切相关,一级结构的变化往往导致蛋白质生物功能 的变化。如镰刀型细胞贫血症,其病因是血红蛋白基因中的一个核苷酸的突变导致该蛋白分 子中β-链第6位谷氨酸被缬氨酸取代。这个一级结构上的细微差别使患者的血红蛋白分子 容易发生凝聚,导致红细胞变成镰刀状,容易破裂引起贫血,即血红蛋白的功能发生了变化。 (2)一级结构与生物进化 研究发现,同源蛋白质中有许多位置的氨基酸是相同的,而其它氨基酸差异较大。如比 较不同生物的细胞色素C的一级结构,发现与人类亲缘关系接近,其氨基酸组成的差异越 小,亲缘关系越远差异越大 (3)蛋白质的激活作用 在生物体内,有些蛋白质常以前体的形式合成,只有按一定方式裂解除去部分肽链之 后才具有生物活性,如酶原的激活 2.蛋白质空间结构与功能的关系 蛋白质的空间结构与功能之间有密切相关性,其特定的空间结构是行使生物功能的基 础。以下两方面均可说明这种相关性。 (1).核糖核酸酶的变性与复性及其功能的丧失与恢复 核糖核酸酶是由124个氨基酸组成的一条多肽链,含有四对二硫键,空间构象为球状分 子。将天然核糖核酸酶在8mol/L脲中用β-巯基乙醇处理,则分子内的四对二硫键断裂,分 子变成一条松散的肽链,此时酶活性完全丧失。但用透析法除去β-巯基乙醇和脲后,此酶 经氧化又自发地折叠成原有的天然构象,同时酶活性又恢复。 (2)血红蛋白的变构现象 血红蛋白是一个四聚体蛋白质,具有氧合功能,可在血液中运输氧。研究发现,脱氧血 红蛋白与氧的亲和力很低,不易与氧结合。一旦血红蛋白分子中的一个亚基与O2结合,就 会引起该亚基构象发生改变,并引起其它三个亚基的构象相继发生变化,使它们易于和氧结 合,说明变化后的构象最适合与氧结合。 从以上例子可以看出,只有当蛋白质以特定的适当空间构象存在时才具有生物活性 (五)蛋白质的重要性质 蛋白质是两性电解质,它的酸碱性质取决于肽链上的可解离的R基团。不同蛋白质所 含有的氨基酸的种类、数目不同,所以具有不同的等电点。当蛋白质所处环境的pH大于pl 时,蛋白质分子带负电荷,pH小于pl时,蛋白质带正电荷,pH等于p时,蛋白质所带净 电荷为零,此时溶解度最小。 蛋白质分子表面带有许多亲水基团,使蛋白质成为亲水的胶体溶液。蛋白质颗粒周围的2 折叠卷曲形成复杂的球状分子结构。具有三级结构的蛋白质一般都是球蛋白,这类蛋白质的 多肽链在三维空间中沿多个方向进行盘绕折叠,形成十分紧密的近似球形的结构,分子内部 的空间只能容纳少数水分子,几乎所有的极性 R 基都分布在分子外表面,形成亲水的分子 外壳,而非极性的基团则被埋在分子内部,不与水接触。蛋白质分子中侧链 R 基团的相互 作用对稳定球状蛋白质的三级结构起着重要作用。 蛋白质的四级结构指数条具有独立的三级结构的多肽链通过非共价键相互连接而成的 聚合体结构。在具有四级结构的蛋白质中,每一条具有三级结构的皑链称为亚基或亚单位, 缺少一个亚基或亚基单独存在都不具有活性。四级结构涉及亚基在整个分子中的空间排布以 及亚基之间的相互关系。 维持蛋白质空间结构的作用力主要是氢键、离子键、疏水作用力和范德华力等非共价键, 又称次级键。此外,在某些蛋白质中还有二硫键,二硫键在维持蛋白质构象方面也起着重要 作用。 蛋白质的空间结构取决于它的一级结构,多肽离岸主链上的氨基酸排列顺序包含了形成 复杂的三维结构(即正确的空间结构)所需要的全部信息。 (四)蛋白质结构与功能的关系 不同的蛋白质,由于结构不同而具有不同的生物学功能。蛋白质的生物学功能是蛋白质 分子的天然构象所具有的性质,功能与结构密切相关。 1.一级结构与功能的关系 蛋白质的一级结构与蛋白质功能有相适应性和统一性,可从以下几个方面说明: (1)一级结构的变异与分子病 蛋白质中的氨基酸序列与生物功能密切相关,一级结构的变化往往导致蛋白质生物功能 的变化。如镰刀型细胞贫血症,其病因是血红蛋白基因中的一个核苷酸的突变导致该蛋白分 子中β-链第 6 位谷氨酸被缬氨酸取代。这个一级结构上的细微差别使患者的血红蛋白分子 容易发生凝聚,导致红细胞变成镰刀状,容易破裂引起贫血,即血红蛋白的功能发生了变化。 (2)一级结构与生物进化 研究发现,同源蛋白质中有许多位置的氨基酸是相同的,而其它氨基酸差异较大。如比 较不同生物的细胞色素 C 的一级结构,发现与人类亲缘关系接近,其氨基酸组成的差异越 小,亲缘关系越远差异越大。 (3)蛋白质的激活作用 在生物体内,有些蛋白质常以前体的形式合成,只有按一 定方式裂解除去部分肽链之 后才具有生物活性,如酶原的激活。 2.蛋白质空间结构与功能的关系 蛋白质的空间结构与功能之间有密切相关性,其特定的空间结构是行使生物功能的基 础。以下两方面均可说明这种相关性。 (1).核糖核酸酶的变性与复性及其功能的丧失与恢复 核糖核酸酶是由 124 个氨基酸组成的一条多肽链,含有四对二硫键,空间构象为球状分 子。将天然核糖核酸酶在 8mol/L 脲中用β-巯基乙醇处理,则分子内的四对二硫键断裂,分 子变成一条松散的肽链,此时酶活性完全丧失。但用透析法除去β-巯基乙醇和脲后,此酶 经氧化又自发地折叠成原有的天然构象,同时酶活性又恢复。 (2)血红蛋白的变构现象 血红蛋白是一个四聚体蛋白质,具有氧合功能,可在血液中运输氧。研究发现,脱氧血 红蛋白与氧的亲和力很低,不易与氧结合。一旦血红蛋白分子中的一个亚基与 O2 结合,就 会引起该亚基构象发生改变,并引起其它三个亚基的构象相继发生变化,使它们易于和氧结 合,说明变化后的构象最适合与氧结合。 从以上例子可以看出,只有当蛋白质以特定的适当空间构象存在时才具有生物活性。 (五)蛋白质的重要性质 蛋白质是两性电解质,它的酸碱性质取决于肽链上的可解离的 R 基团。不同蛋白质所 含有的氨基酸的种类、数目不同,所以具有不同的等电点。当蛋白质所处环境的 pH 大于 pI 时,蛋白质分子带负电荷,pH 小于 pI 时,蛋白质带正电荷,pH 等于 pI 时,蛋白质所带净 电荷为零,此时溶解度最小。 蛋白质分子表面带有许多亲水基团,使蛋白质成为亲水的胶体溶液。蛋白质颗粒周围的
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有