正在加载图片...
工程科学学报,第44卷,第X期 线性相关.综合分析表明,在实际真空脱气过程 removal from the vacuum tank degasser.Steel Res Int,2014, 中,只要选择合适的真空压力、吹氩流量等参数来 85(9):1393 提高搅拌动能密度,便可提高钢液真空脱气的效率 [4]Kleimt B,Kohle S,Johann K P,et al.Dynamic process model for denitrogenation and dehydrogenation by vacuum degassing.Scand -0.4 J Metall,2000,29(5):194 。Zhang et al-oy [5] Steneholm K,Andersson M,Tilliander A,et al.Removal of ◆Karounietal..Psl -08 hydrogen,nitrogen and sulphur from tool steel during vacuum degassing.Ironmak Steelmak,2013,40(3):199 [6]Ende M A,Kim Y M,Cho M K,et al.A kinetic model for the -12 ruhrstahl heraeus (RH)degassing process.Metall Mater Trans B, Equation(11) 2011,42(3):477 画-1.6 [7]Takahashi M,Matsumoto H,Saito T.Mechanism of decarburization in RH degasser./SI//nt,1995,35(12):1452 -20 [8]You Z M,Cheng GG,Wang X C,et al.Mathematical model for -3.2 -2.4-1.6-0.80.0 decarburization of ultra-low carbon steel in single snorkel refining Ig[a/(W-m)] furnace.Metall Mater Trans B,2015,46(1):459 图10真空精炼脱氢过程中数学模型预测的体积传质系数 [9]Huang Y,Cheng GG,Wang Q M,et al.Mathematical model for Fig.10 Prediction of volumetric mass transfer coefficient using decarburization of ultralow carbon steel during RH treatment. mathematical models in vacuum refining process Ironmak Steelmak,2020,47(6):655 [10]Zhang GL,Cheng GG,Dai W X,et al.Study on dehydrogenation 3结论 behaviour of molten steel in single snorkel refining fumace(SSRF) (1)通过实验观察和理论分析,证实了以往脱 by a mathematical model.Ironmak Steelmak,2020,48(8):909 气数学模型假设的内部反应位点的存在.在负压 [11]Geng DQ.Lei H,Liu A H,et al.Physical simulation for mixing and mass transfer characteristics during RH vacuum refining 为25~75kPa范围内,容器的壁面或其他粗糙位 process The 9thVacuum Metallurgy and Surface Engineering 置会自发析出细小气泡进行内部脱气反应;当压 Conference.Shenyang,2009:164 力在25kPa时,脱气最快,析出的气泡最多,脱气 [12]Kitamura S Y,Miyamoto K I,Tsujino R.The evaluation of gas- 效果最佳.此外,内部脱气反应主要发生于脱气的 liquid reaction rate at bath surface by the gas adsorption and 初始阶段,即高溶解氧浓度范围内 desorption tests.Tetsu-to-Hagane,1994,80(2):101 (2)水模型中溶解氧浓度的对数与时间呈线性 [13]Maruoka N,Lazuardi F,Nogami H,et al.Effect of bottom 关系,其斜率kAV为体积传质系数,这与钢液真 bubbling conditions on surface reaction rate in oxygen-water 空脱气规律相类似,故可利用水模型的脱氧去除 system.ISL/Int,2010,50(1):89 过程模拟钢液的脱气行为.为定量描述k:A厂.本 [14]Maruoka N,Lazuardi F,Maeyama T,et al.Evaluation of bubble 文引入搅拌动能密度,回归得到的函数关系式为 eye area to improve gas/liquid reaction rates at bath surfaces.ISI M,2011,51(2:236 lg(k·AV-)=1.02lg8-2.042,其与前人的研究结 [15]Guo D,Irons G A.Modeling of gas-liquid reactions in ladle 果相一致 metallurgy:Part I.Plysical modeling.Metall Mater Trans B,2000, 31(6):1447 参考文献 [16]Guo D,Irons G A.Modeling of gas-liquid reactions in ladle [1]Zhu B H.Study on the Gas-Liquid Two Phase Flow and metallurgy:Part II.Numerical simulation.Metall Mater Trans B, Dehydrogenation Behavior in RH Vacum Refining Process 2000,31(6):1457 [Dissertation].Chongqing:Chongqing University,2017 [17]Kim Y T,Yi K W.Effects of the ultrasound treatment on reaction (朱博洪RH真空精炼过程的气液两相流动及脱氢行为研究[学 rates in the RH processor water model system.Met Mater Int, 位论文]重庆:重庆大学,2017) 2019,25(1):238 [2]Karouni F,Wynne B P,Talamantes-Silva J,et al.Hydrogen [18]Schneider S,Xie Y K,Oeters F.Mass transfer of dissolved gas degassing in a vacuum arc degasser using a three-phase eulerian from a liquid into a rising bubble swarm.Steel Res,1991,62(7): method and discrete population balance model.Steel Res /nt,2018, 296 89(5):1700550 [19]Brennen C E.Cavitation and Bubble Dynamics.Cambridge: [3]Yu S,Miettinen J,Louhenkilpi S.Modeling study of nitrogen Cambridge University Press,2014线性相关. 综合分析表明,在实际真空脱气过程 中,只要选择合适的真空压力、吹氩流量等参数来 提高搅拌动能密度,便可提高钢液真空脱气的效率. −3.2 −2.4 Equation(11) −1.6 −0.8 0.0 Zhang et al·[10] Karouni et al.[26] lg[ε/(W·m−3)] −0.4 −0.8 −1.2 −1.6 −2.0 lg[(k·A·V−1)/min−1 ] 图 10    真空精炼脱氢过程中数学模型预测的体积传质系数 Fig.10     Prediction  of  volumetric  mass  transfer  coefficient  using mathematical models in vacuum refining process 3    结论 (1) 通过实验观察和理论分析,证实了以往脱 气数学模型假设的内部反应位点的存在. 在负压 为 25~75 kPa 范围内,容器的壁面或其他粗糙位 置会自发析出细小气泡进行内部脱气反应;当压 力在 25 kPa 时,脱气最快,析出的气泡最多,脱气 效果最佳. 此外,内部脱气反应主要发生于脱气的 初始阶段,即高溶解氧浓度范围内. lg (k · A·V −1 ) = 1.02 ·lgε−2.042 (2) 水模型中溶解氧浓度的对数与时间呈线性 关系,其斜率 k·A·V−1 为体积传质系数,这与钢液真 空脱气规律相类似,故可利用水模型的脱氧去除 过程模拟钢液的脱气行为. 为定量描述 k·A·V−1,本 文引入搅拌动能密度,回归得到的函数关系式为 ,其与前人的研究结 果相一致. 参    考    文    献 Zhu  B  H. Study on the Gas-Liquid Two Phase Flow and Dehydrogenation Behavior in RH Vacuum Refining Process [Dissertation]. Chongqing: Chongqing University, 2017 ( 朱博洪. RH真空精炼过程的气液两相流动及脱氢行为研究[学 位论文]. 重庆: 重庆大学, 2017) [1] Karouni  F,  Wynne  B  P,  Talamantes-Silva  J,  et  al.  Hydrogen degassing  in  a  vacuum  arc  degasser  using  a  three-phase  eulerian method and discrete population balance model. Steel Res Int, 2018, 89(5): 1700550 [2] [3] Yu  S,  Miettinen  J,  Louhenkilpi  S.  Modeling  study  of  nitrogen removal  from  the  vacuum  tank  degasser. Steel Res Int,  2014, 85(9): 1393 Kleimt B, Köhle S, Johann K P, et al. Dynamic process model for denitrogenation and dehydrogenation by vacuum degassing. Scand J Metall, 2000, 29(5): 194 [4] Steneholm  K,  Andersson  M,  Tilliander  A,  et  al.  Removal  of hydrogen,  nitrogen  and  sulphur  from  tool  steel  during  vacuum degassing. Ironmak Steelmak, 2013, 40(3): 199 [5] Ende  M  A,  Kim  Y  M,  Cho  M  K,  et  al.  A  kinetic  model  for  the ruhrstahl heraeus (RH) degassing process. Metall Mater Trans B, 2011, 42(3): 477 [6] Takahashi  M,  Matsumoto  H,  Saito  T.  Mechanism  of decarburization in RH degasser. ISIJ Int, 1995, 35(12): 1452 [7] You Z M, Cheng G G, Wang X C, et al. Mathematical model for decarburization of ultra-low carbon steel in single snorkel refining furnace. Metall Mater Trans B, 2015, 46(1): 459 [8] Huang Y, Cheng G G, Wang Q M, et al. Mathematical model for decarburization  of  ultralow  carbon  steel  during  RH  treatment. Ironmak Steelmak, 2020, 47(6): 655 [9] Zhang G L, Cheng G G, Dai W X, et al. Study on dehydrogenation behaviour of molten steel in single snorkel refining furnace (SSRF) by a mathematical model. Ironmak Steelmak, 2020, 48(8): 909 [10] Geng D Q, Lei H, Liu A H, et al. Physical simulation for mixing and  mass  transfer  characteristics  during  RH  vacuum  refining process  // The 9thVacuum Metallurgy and Surface Engineering Conference. Shenyang, 2009: 164 [11] Kitamura S Y, Miyamoto K I, Tsujino R. The evaluation of gas￾liquid  reaction  rate  at  bath  surface  by  the  gas  adsorption  and desorption tests. Tetsu-to-Hagane, 1994, 80(2): 101 [12] Maruoka  N,  Lazuardi  F,  Nogami  H,  et  al.  Effect  of  bottom bubbling  conditions  on  surface  reaction  rate  in  oxygen–water system. ISIJ Int, 2010, 50(1): 89 [13] Maruoka N, Lazuardi F, Maeyama T, et al. Evaluation of bubble eye area to improve gas/liquid reaction rates at bath surfaces. ISIJ Int, 2011, 51(2): 236 [14] Guo  D,  Irons  G  A.  Modeling  of  gas-liquid  reactions  in  ladle metallurgy: Part I. Physical modeling. Metall Mater Trans B, 2000, 31(6): 1447 [15] Guo  D,  Irons  G  A.  Modeling  of  gas-liquid  reactions  in  ladle metallurgy: Part II. Numerical simulation. Metall Mater Trans B, 2000, 31(6): 1457 [16] Kim Y T, Yi K W. Effects of the ultrasound treatment on reaction rates  in  the  RH  processor  water  model  system. Met Mater Int, 2019, 25(1): 238 [17] Schneider  S,  Xie  Y  K,  Oeters  F.  Mass  transfer  of  dissolved  gas from a liquid into a rising bubble swarm. Steel Res, 1991, 62(7): 296 [18] Brennen  C  E. Cavitation and Bubble Dynamics.  Cambridge: Cambridge University Press, 2014 [19] · 6 · 工程科学学报,第 44 卷,第 X 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有