w'= 「Td0+ di cons tantt r=0 4=0 bs =cons tant ① ② ③ ④ ias个 ③ Ips ① 0 0 w'= d+Ldis+L io dios+[i+M(is cos0+ios sin0)]di, bs -cons tan t ① ② ③ ④ w=.2+,2+斗,2+Mcos0+Lsn) T=+0w' 0 =Mi,(-ias sin0+ios Cos0) Balanced 2 phase currents ias =Is cosot,ips =Is sinot,i=I,0=@mt+Y Te MI,I(-cos ot sin0+sinot cose)=MI,Is sin(@t-0) MI,Is sin((-m)t-Y) <Te>≠0台0=0m Te =-MI I.siny =T-B dt2 t 6.641,Electromagnetic Fields,Forces,and Motion Lecture 13 Prof.Markus Zahn Page 13 of 146.641, Electromagnetic Fields, Forces, and Motion Lecture 13 Prof. Markus Zahn Page 13 of 14 as bs bs as as r r r bs as as bs bs r r i 0 cons tan t cons tan t cons tan t i 0 i 0 i cons tan t i cons tan t i 0 i 0 i 0 i cons tan t w ' = T d di di di = θ= θ= θ= = == = = = == θ+ λ + λ + λ ∫∫ ∫ ∫ 1 2 3 4 0 ( ) as bs as r bs s as as s bs bs r r as bs r i 0 cons tan t i 0 i cons tan t i 0 i cons tan t w ' = T d L i di L i di L i M i cos i sin di = θ= = = = = θ+ + + + θ+ θ ⎡ ⎤ ∫∫ ∫ ∫ ⎣ ⎦ 1 2 3 4 ( ) 2 22 s as s bs r r r as bs 111 w' = L i L i L i Mi i cos i sin 222 + + + θ+ θ ( ) as bs r e r as bs i ,i ,i w' T = = Mi i sin i cos ∂ + − θ+ θ ∂θ Balanced 2 phase currents ω ω θ ω +γ i = I cos t , i = I sin t , i = I , = t as s bs s r r m ( ) − ω θ+ ω θ ω −θ ( ) e T = M I I cos t sin sin t cos = M I I sin t rs rs = MI I sin t rs m ((ω −ω − ) γ) ≠ ⇒ω ω e <T > 0 = m e T = M I I sin r s − γ 2 e 2 d d J =T dt dt θ θ − β