正在加载图片...
complete homogenization would require longer times than are economically acceptable under production conditions. Therefore, in very large sections, gross differences in alloy concentration sometimes persist and are arried into the final product One function of hot working is to break up the cast(dendritic) structure and promote chemical homogeneity, and a minimum amount of cross-sectional reduction is usually required from the cast ingot to the billet. Hot working can partially correct the results of segregation by recrystallizing or breaking up the grain structure to promote a more homogeneous substructure. Initial working first causes flow in the weaker matrix (interdendritic) regions and tends to reorient the stronger dendrites in the direction of working. With increased mechanical working, the dendrites deform and fracture, thus becoming increasingly elongated a certain degree of alloy segregation occurs in all wrought products, and hot working can alleviate of the inhomogeneity. However, if the ingot is badly segregated, hot working just tends to alter the of the segregation region into a banded structure. Figure 3 shows banding from a carbon-rich centerline condition in a hot-rolled 104 1 steel. Figure 4 shows an extreme example of banding in a hot-rolled plain carbon steel (1022) in which alternate layers of ferrite and pearlite have formed along the rolling direction. The relationship between increasing percentages of reduction by hot rolling and the intensity of banding in type 430 stainless steel is demonstrated by Fig. 5 Fig 3 Longitudinal section through a hot-rolled 1041 steel bar showing a carbon-rich centerline (dark horizontal bands) that resulted from segregation in the ingot. Picral. 3x. Courtesy of j.R. Kilpatrickcomplete homogenization would require longer times than are economically acceptable under production conditions. Therefore, in very large sections, gross differences in alloy concentration sometimes persist and are carried into the final product. One function of hot working is to break up the cast (dendritic) structure and promote chemical homogeneity, and a minimum amount of cross-sectional reduction is usually required from the cast ingot to the billet. Hot working can partially correct the results of segregation by recrystallizing or breaking up the grain structure to promote a more homogeneous substructure. Initial working first causes flow in the weaker matrix (interdendritic) regions and tends to reorient the stronger dendrites in the direction of working. With increased mechanical working, the dendrites deform and fracture, thus becoming increasingly elongated. A certain degree of alloy segregation occurs in all wrought products, and hot working can alleviate some of the inhomogeneity. However, if the ingot is badly segregated, hot working just tends to alter the shape of the segregation region into a banded structure. Figure 3 shows banding from a carbon-rich centerline condition in a hot-rolled 1041 steel. Figure 4 shows an extreme example of banding in a hot-rolled plain carbon steel (1022) in which alternate layers of ferrite and pearlite have formed along the rolling direction. The relationship between increasing percentages of reduction by hot rolling and the intensity of banding in type 430 stainless steel is demonstrated by Fig. 5. Fig. 3 Longitudinal section through a hot-rolled 1041 steel bar showing a carbon-rich centerline (dark horizontal bands) that resulted from segregation in the ingot. Picral. 3×. Courtesy of J.R. Kilpatrick
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有