正在加载图片...
第11卷第3期 2018年2月 中国科技论文在线精品论文 244 mycorrhizal fungus Glomus intraradices[]. New Phytologist, 2013, 197(2): 617-630 [57 ZOUYN, HUANG Y M, WUQS, et al. Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca" influxes in trifoliate orange roots under drought stress[J]. Mycorrhiza, 2014, 25(2) 143-152 58 WILDE P, MANAL A, STODDEN M, et al. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes[J]. Environmental Microbiology, 2009, 11(6): 1548-1561 59 GUO X, GONG J. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem[]. Mycorrhiza, 2014, 24(2): 79-94 [60 CHANDRASEKARAN M, BOUGHATTAS S, HU S, et al. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stressp. Mycorrhiza, 2014, 24(8): 611-625. [61 LEUNG H M, WANG Z W, YE Z H, et al. Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review]. Pedosphere, 2013, 23 (5): 549-563 [62] HU J L, WUFY, WU SC, et al. Biochar and Glomus caledonium influence Cd accumulation of upland kangkong (pomoea aquatica Forsk. )intercropped with Alfred stonecrop(Sedum alfredii Hance)J]. Scientific Reports, 2014, 4: 4671 [63] HILDEBRANDT U, REGVAR M, BOTHE H. Arbuscular mycorrhiza and heavy metal tolerance[J]. Phytochemistry, 2007, 64 PENNISI E. The secret life of fungi]. Science, 2004, 304(5677): 1620-1622. [65] GOHRE V, PASZKOWSKI U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation[J] [66] TORRECILLAS E, ALGUACIL MM, ROLDAN A Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies[]. Applied and Environmental Microbiology, 2012, 78(17) 6180-6186. 67 LIU Y J, HE J X, SHI G X, et al. Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high altitude in ology ecology,2011,78(2):355-36 [68] HELGASON T, MERRYWEATHER J W, YOUNG JPW, et al. Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community[]. Journal of Ecology, 2007, 95(4): 623-630 [69 van der HEIDEN MG A, KLiRONOMOS JN, URSIC M, et al. Mycorrhizal fungal diversity determines plant biodiversity, [70] WAGG C, JANSA J, SCHMID B, et al. Belowground biodiversity effects of plant symbionts support aboveground productivity[J]. Ecology Letters, 2011, 14(10): 1001-1009 [71] HARTNETT D C, WILSON G W T Mycorrhizal influence plant community structure and diversity in tallgrass prairie[J] Ecology,199980(4):1187-1195 2] YANGG W, LIU N, LU WJ, et al. The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability [] Journal of Ecology, 2014, 102( 1082. [73 van der HEDDEN MG A, Verkade S, de bruin s J Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland J]. Global Change Biology, 2008, 14(11): 2626-2635 [74 KARANIKA E D, MAMOLOS A P, ALIFRAGIS D A, et al. Arbuscular mycorrhizas contribution to nutrition, productivity, structure and diversity of plant community in mountainous herbaceous grassland of northern Greece]. Plant Ecology, 2008, 199(2):225-234 [75 DRIGO B, PIJL A S, DUYTS H, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO,UJ]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(24):10938-10942 [76 KAISER C, KILBURN M R, CLODE P L, et al. Exploring the transfer of recent plant photosynthates to soil microbes第11卷 第3期 2018 年 2 月 中国科技论文在线精品论文 244 mycorrhizal fungus Glomus intraradices[J]. New Phytologist, 2013, 197(2): 617-630. [57] ZOU Y N, HUANG Y M, WU Q S, et al. Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress[J]. Mycorrhiza, 2014, 25(2): 143-152. [58] WILDE P, MANAL A, STODDEN M, et al. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes[J]. Environmental Microbiology, 2009, 11(6): 1548-1561. [59] GUO X, GONG J. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem[J]. Mycorrhiza, 2014, 24(2): 79-94. [60] CHANDRASEKARAN M, BOUGHATTAS S, HU S, et al. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress[J]. Mycorrhiza, 2014, 24(8): 611-625. [61] LEUNG H M, WANG Z W, YE Z H, et al. Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review[J]. Pedosphere, 2013, 23(5): 549-563. [62] HU J L, WU F Y, WU S C, et al. Biochar and Glomus caledonium influence Cd accumulation of upland kangkong (Ipomoea aquatica Forsk.) intercropped with Alfred stonecrop (Sedum alfredii Hance)[J]. Scientific Reports, 2014, 4: 4671. [63] HILDEBRANDT U, REGVAR M, BOTHE H. Arbuscular mycorrhiza and heavy metal tolerance[J]. Phytochemistry, 2007, 68(1): 139-146. [64] PENNISI E. The secret life of fungi[J]. Science, 2004, 304(5677): 1620-1622. [65] GÖHRE V, PASZKOWSKI U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation[J]. Planta, 2006, 223(6): 1115-1122. [66] TORRECILLAS E, ALGUACIL M M, ROLDÁN A. Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies[J]. Applied and Environmental Microbiology, 2012, 78(17): 6180-6186. [67] LIU Y J, HE J X, SHI G X, et al. Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high altitude in Tibet plateau[J]. FEMS Microbiology Ecology, 2011, 78(2): 355-365. [68] HELGASON T, MERRYWEATHER J W, YOUNG J P W, et al. Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community[J]. Journal of Ecology, 2007, 95(4): 623-630. [69] van der HEIJDEN M G A, KLIRONOMOS J N, URSIC M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity[J]. Nature, 1998, 396(6706): 69-72. [70] WAGG C, JANSA J, SCHMID B, et al. Belowground biodiversity effects of plant symbionts support aboveground productivity[J]. Ecology Letters, 2011, 14(10): 1001-1009. [71] HARTNETT D C, WILSON G W T. Mycorrhizal influence plant community structure and diversity in tallgrass prairie[J]. Ecology, 1999, 80(4): 1187-1195. [72] YANG G W, LIU N, LU W J, et al. The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability[J]. Journal of Ecology, 2014, 102(4): 1072-1082. [73] van der HEIJDEN M G A, VERKADE S, de BRUIN S J. Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland[J]. Global Change Biology, 2008, 14(11): 2626-2635. [74] KARANIKA E D, MAMOLOS A P, ALIFRAGIS D A, et al. Arbuscular mycorrhizas contribution to nutrition, productivity, structure and diversity of plant community in mountainous herbaceous grassland of northern Greece[J]. Plant Ecology, 2008, 199(2): 225-234. [75] DRIGO B, PIJL A S, DUYTS H, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(24): 10938-10942. [76] KAISER C, KILBURN M R, CLODE P L, et al. Exploring the transfer of recent plant photosynthates to soil microbes:
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有