正在加载图片...
BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003 o Key need for device design: controlled placement of motors on surfaces Combining the hybrid microspl engineered materials as a step toward nanodevices diagram(A)and CCD photomicrograph(B) created usin Figure 3. Optical lithography was used to create the nanoimprint- ing mold(A), which subsequently was used to create fnickel dots(B), Dots were 50-250 nm diameter and (Bachand et al., 2000) References Wu, C.& Wang, X H Globule-to-coil transition of a single homopolymer chain in solution. Physical Review Letters80,4092-4094(1998) 2. Ding, Z, Fong, R. B, Long, C.J., Stayton, P S& Hoffman, A. s Size-dependent control of the binding of 3. Butin.s,t. Dit , t oste, pt:. j, istayion p. S. H oftimldn, at s.site-1specfic polyme for pH olled binding and triggered release of biotin. Bioconjug Chem 11, 78-83(2000) Shimoboji, T, Ding, Z, Stayton, P. S& Hoffman, A. S Mechanistic investigation of smart polymer-protein conjugates Bioconjug Chem 12, 314-9(2001 Ding, Z et al. Temperature control of biotin binding and release with A streptavidin-poly (N-isopropylacrylamide) 5678 site-specific conjugate Bioconjug Chem 10, 395-400(1999) Vogel, V Reverse engineering: Learning from proteins how to enhance the performance of synthetic nanosystems. Mrs Bulletin 27, 972-978 (2002) Vale, R. D& Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288,88-95(2000) Hiratsuka, Y, Tada, T, Oiwa, K, Kanayama, T& Uyeda, T.Q. Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophys J81, 1555-61(2001) Montemagno, C. Biomolecular motors: Engines for nanofabricated systems. Abstracts of Papers of the American Chemical Society 221, U561-U561(2001) 10. Montemagno, C& Bachand, G. Constructing nanomechanical devices powered by biomolecular motors Nanotechnology 10, 225-231(1999) 11. Bachand, G.D. et al. Precision attachment of individual F-1-ATPase biomolecular motors on nanofabricated substrates. Nano Letters 1, 42-44 (2001) 12. Soong, R K et al. Powering an inorganic nanodevice with a biomolecular motor Science 290, 1555-1558 (2000) 13. Liu, H.Q. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nature Materials1,173-177(2002 Lecture 13- Hybrid macromolecules 12 of 13BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003 o Key need for device design: controlled placement of motors on surfaces Combining the hybrid Fluorescent microsphere molecular motor with engineered materials as a step toward nanodevices Hybrid ATPase (Bachand et al., 2000) References 1. Wu, C. & Wang, X. H. Globule-to-coil transition of a single homopolymer chain in solution. Physical Review Letters 80, 4092-4094 (1998). 2. Ding, Z., Fong, R. B., Long, C. J., Stayton, P. S. & Hoffman, A. S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411, 59-62 (2001). 3. Bulmus, V., Ding, Z., Long, C. J., Stayton, P. S. & Hoffman, A. S. Site-specific polymer-streptavidin bioconjugate for pH-controlled binding and triggered release of biotin. Bioconjug Chem 11, 78-83 (2000). 4. Shimoboji, T., Ding, Z., Stayton, P. S. & Hoffman, A. S. Mechanistic investigation of smart polymer-protein conjugates. Bioconjug Chem 12, 314-9 (2001). 5. Ding, Z. et al. Temperature control of biotin binding and release with A streptavidin-poly(N-isopropylacrylamide) site-specific conjugate. Bioconjug Chem 10, 395-400 (1999). 6. Vogel, V. Reverse engineering: Learning from proteins how to enhance the performance of synthetic nanosystems. Mrs Bulletin 27, 972-978 (2002). 7. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88-95 (2000). 8. Hiratsuka, Y., Tada, T., Oiwa, K., Kanayama, T. & Uyeda, T. Q. Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophys J 81, 1555-61 (2001). 9. Montemagno, C. Biomolecular motors: Engines for nanofabricated systems. Abstracts of Papers of the American Chemical Society 221, U561-U561 (2001). 10. Montemagno, C. & Bachand, G. Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology 10, 225-231 (1999). 11. Bachand, G. D. et al. Precision attachment of individual F-1-ATPase biomolecular motors on nanofabricated substrates. Nano Letters 1, 42-44 (2001). 12. Soong, R. K. et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555-1558 (2000). 13. Liu, H. Q. et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nature Materials 1, 173-177 (2002). Lecture 13 – Hybrid macromolecules 12 of 13
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有