正在加载图片...
王涛等:MA-SPS制备超细晶Ti8Mo-Fe合金的摩擦磨损性能 ·431 面上还出现了少量的黏着痕迹和尺寸较大的片状磨 chemical behaviour of TiMo alloys in simulated physiological solu- 屑,说明表面还存在轻微的黏着磨损过程.而经机械 tions.Electrochim Acta,2013,113:470 合金化+放电等离子烧结工艺制备的超细晶T8Mo一 [5]Gu G Y,Chen F,Zhang Q,et al.Influence of heat treatment on microstructure and mechanical properties of Ti30Nb5Ta6Zr alloy. 3Fe合金的晶粒尺寸细小,其强度和硬度得到了提高, Rare Metal Mater Eng,2010.39(4):678 在磨损试验中的塑性变形较小,产生的裂纹难以萌生 (顾桂月,陈锋,张强,等.热处理对T30Nh5Ta6Zx合金组织 和扩展,结合其较少的磨损体积,可认为其磨粒磨损的 和力学性能的影响.稀有金属材料与工程,2010,39(4): 程度较小.因此,相较于微米晶粒的Ti一8Mo一3Fe合 678) 金,超细晶Ti-8Mo-3Fe合金的摩擦磨损性能得到了 Ninomi M.Mechanical biocompatibilities of titanium alloys for bi- omedical applications.J Mech Behar Biomed Mater,2008,1(1): 显著提高 30 综上所述,铸造纯T主要发生以黏着磨损为主, [7]Wang T,Zhang YQ,Jiang Y H,et al.Mechanical properties of 磨粒磨损为辅的磨损过程:铸造纯TC4则发生磨粒磨 Ti-35Nb-7Zr-XCPP biomedical composites prepared by spark 损和黏着磨损并存的混合磨损过程:微米晶粒T一 plasma sintering.Rare Met Mater Eng,2015,44(4):1030 8Mo-3Fe主要发生以磨粒磨损为主,黏着磨损为辅的 (王海,张玉勤,蒋业华,等.Ti-35Nb-7Z一XCPP生物复合 材料的放电等离子烧结制备及其力学性能研究.稀有金属材 磨损过程:而超细晶Ti-8Mo一3Fe合金主要发生以磨 料与工程,2015,44(4):1030) 粒磨损为主的磨损过程 8] Sathish S,Geetha M,Pandey N D,et al.Studies on the corrosion 3结论 and wear behavior of the laser nitrided biomedical titanium and its alloys.Mater Sci Eng C,2010,30(3):376 (1)以元素粉末为原料,采用机械合金化+放电 9]Tian L,Ma M,He Q.Friction and wear properties of Til3Nb13Zr 等离子烧结(MA一放电等离子烧结),可制备出超细晶 alloy by surface mechanical attrition treatment.Sci Technol Eng, 2014,14(8):141 的Ti-8Mo-3Fe合金,平均晶粒尺寸为1.5um,显微组 (田龙,马铭,何强.T3Nh3Zr合金机械研磨处理摩擦磨损 织由B相及少量相组成,表面硬度达到448HV,其 性能研究.科学技术与工程,2014,14(8):141) 硬度值远高于微米晶粒的同成分合金以及铸态纯T [10]Cvijovic-Alagic I,Cvijovic Z,Mitrovic S,et al.Wear and corro- 及TC4合金 sion behaviour of Ti-13Nb-13Zr and Ti-6Al-4V alloys in simu- (2)相同摩擦磨损条件下,超细晶Ti-8Mo-3Fe合 lated physiological solution.Corros Sci,2011,53(2):796 1] 金的摩损程度低于微米晶粒Ti-8Mo-3Fe和铸态的纯 Wang M,Yang YQ,Luo X.Research status in preparation and properties of ultra-fine grained Ti alloys.Mater Rev,2013,27 Ti及TC4合金,其具有最低的磨损体积和较稳定的摩 (7):94 擦系数,表明超细晶Ti-8Mo-3Fe合金的耐磨性能优 (王苗,杨延清,罗贤.超细品钛合金的制备及性能研究现 于其他3种材料 状.材料导报,2013,27(7):94) (3)微米晶粒Ti-8Mo-3Fe合金和铸态纯Ti及 [12]Lin Z J,Wang L Q,Lii W J,et al.Research progress of fabrica- TC4合金都发生了磨粒磨损和黏着磨损并存的混合磨 ting ultrafine-grained biomedical titanium alloys by severe plastic deformation (SPD).J Mater Metall,2014,13(3):206 损过程,而超细晶Ti-一8Mo一3Fe合金的磨损机制是磨 (林正捷,王立强,吕维洁,等.大塑性变形制备超细品生物 粒磨损 医用钛合金的研究进展.材料与治金学报,2014,13(3): 206) 参考文献 [13]Zhang T Y,Liu Y,Liu B,et al.Superplastic deformation be- [1]Atapour M,Pilchak A L.Frankel GS,et al.Corrosion behavior havior and microstructure evolution of fine-grained Ti-6Al-4V of B titanium alloys for biomedical applications.Mater Sci Eng C, alloy.Mater Sci Eng Powder Metall,2014,19(2):184 2011,31(5):885 (张拓阳,刘咏,刘彬,等.细品T6A4V合金的超塑性变 Zhang H Y,Zhu Y M,Wang W Y,et al.Effect of Cr element 形行为与组织演变.粉末治金材料科学与工程,2014,19 addition on microstructure and mechanical properties of powder (2):184) metallurgy TCA alloy.Mater Sci Eng Pouder Metall,2015,20 D4] Webster T J,Ejiofor J U.Increased osteoblast adhesion on (3):383 nanophase metals:Ti,Ti6Al4V,and CoCrMo.Biomaterials, (张豪胤,祝要民,王文焱,等.元素Cr含量对粉末治金TC4 2004,25(19):4731 合金组织与性能的影响.粉末治金材料科学与工程,2015, [15]La PQ,Ma J Q,Zhu Y T,et al.Dry-sliding tribological proper- 20(3):383) ties of ultrafine-grained Ti prepared by severe plastic deforma- B3]Geetha M,Singh A K,Asokamani R,et al.Ti based biomateri- tion.Acta Mater,2005,53(19)5167 als,the ultimate choice for orthopaedic implants:a review.Prog [16]Long Y,Guo W J,Li Y.Bimodal-grained Ti fabricated by high- Mater Sci,,2009,54(3):397 energy ball milling and spark plasma sintering.Trans Nonferrous 4]Bolat G,Mareci D,Chelariu R,et al.Investigation of the electro- Met Soc China,2016,26(4):1170王 涛等: MA--SPS 制备超细晶 Ti--8Mo--3Fe 合金的摩擦磨损性能 面上还出现了少量的黏着痕迹和尺寸较大的片状磨 屑,说明表面还存在轻微的黏着磨损过程. 而经机械 合金化 + 放电等离子烧结工艺制备的超细晶 Ti--8Mo-- 3Fe 合金的晶粒尺寸细小,其强度和硬度得到了提高, 在磨损试验中的塑性变形较小,产生的裂纹难以萌生 和扩展,结合其较少的磨损体积,可认为其磨粒磨损的 程度较小. 因此,相较于微米晶粒的 Ti--8Mo--3Fe 合 金,超细晶 Ti--8Mo--3Fe 合金的摩擦磨损性能得到了 显著提高. 综上所述,铸造纯 Ti 主要发生以黏着磨损为主, 磨粒磨损为辅的磨损过程; 铸造纯 TC4 则发生磨粒磨 损和黏 着 磨 损 并 存 的 混 合 磨 损 过 程; 微 米 晶 粒 Ti-- 8Mo--3Fe 主要发生以磨粒磨损为主,黏着磨损为辅的 磨损过程; 而超细晶 Ti--8Mo--3Fe 合金主要发生以磨 粒磨损为主的磨损过程. 3 结论 ( 1) 以元素粉末为原料,采用机械合金化 + 放电 等离子烧结( MA--放电等离子烧结) ,可制备出超细晶 的 Ti--8Mo--3Fe 合金,平均晶粒尺寸为 1. 5 μm,显微组 织由 β 相及少量 α 相组成,表面硬度达到 448 HV,其 硬度值远高于微米晶粒的同成分合金以及铸态纯 Ti 及 TC4 合金. ( 2) 相同摩擦磨损条件下,超细晶 Ti--8Mo--3Fe 合 金的摩损程度低于微米晶粒 Ti--8Mo--3Fe 和铸态的纯 Ti 及 TC4 合金,其具有最低的磨损体积和较稳定的摩 擦系数,表明超细晶 Ti--8Mo--3Fe 合金的耐磨性能优 于其他 3 种材料. ( 3) 微米晶粒 Ti--8Mo--3Fe 合 金 和 铸 态 纯 Ti 及 TC4 合金都发生了磨粒磨损和黏着磨损并存的混合磨 损过程,而超细晶 Ti--8Mo--3Fe 合金的磨损机制是磨 粒磨损. 参 考 文 献 [1] Atapour M,Pilchak A L,Frankel G S,et al. Corrosion behavior of β titanium alloys for biomedical applications. Mater Sci Eng C, 2011,31( 5) : 885 [2] Zhang H Y,Zhu Y M,Wang W Y,et al. Effect of Cr element addition on microstructure and mechanical properties of powder metallurgy TC4 alloy. Mater Sci Eng Powder Metall,2015,20 ( 3) : 383 ( 张豪胤,祝要民,王文焱,等. 元素 Cr 含量对粉末冶金 TC4 合金组织与性能的影响. 粉末冶金材料科学与工程,2015, 20( 3) : 383) [3] Geetha M,Singh A K,Asokamani R,et al. Ti based biomateri￾als,the ultimate choice for orthopaedic implants: a review. Prog Mater Sci,2009,54( 3) : 397 [4] Bolat G,Mareci D,Chelariu R,et al. Investigation of the electro￾chemical behaviour of TiMo alloys in simulated physiological solu￾tions. Electrochim Acta,2013,113: 470 [5] Gu G Y,Chen F,Zhang Q,et al. Influence of heat treatment on microstructure and mechanical properties of Ti30Nb5Ta6Zr alloy. Rare Metal Mater Eng,2010,39( 4) : 678 ( 顾桂月,陈锋,张强,等. 热处理对 Ti30Nb5Ta6Zr 合金组织 和力学性能的影响. 稀有金属材料与工程,2010,39 ( 4) : 678) [6] Niinomi M. Mechanical biocompatibilities of titanium alloys for bi￾omedical applications. J Mech Behav Biomed Mater,2008,1( 1) : 30 [7] Wang T,Zhang Y Q,Jiang Y H,et al. Mechanical properties of Ti--35Nb--7Zr--XCPP biomedical composites prepared by spark plasma sintering. Rare Met Mater Eng,2015,44( 4) : 1030 ( 王涛,张玉勤,蒋业华,等. Ti--35Nb--7Zr--XCPP 生物复合 材料的放电等离子烧结制备及其力学性能研究. 稀有金属材 料与工程,2015,44( 4) : 1030) [8] Sathish S,Geetha M,Pandey N D,et al. Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys. Mater Sci Eng C,2010,30( 3) : 376 [9] Tian L,Ma M,He Q. Friction and wear properties of Ti13Nb13Zr alloy by surface mechanical attrition treatment. Sci Technol Eng, 2014,14( 8) : 141 ( 田龙,马铭,何强. Til3Nbl3Zr 合金机械研磨处理摩擦磨损 性能研究. 科学技术与工程,2014,14( 8) : 141) [10] Cvijovic-Alagi ' c I ' ,Cvijovic Z' ,Mitrovic S' ,et al. Wear and corro￾sion behaviour of Ti--13Nb--13Zr and Ti--6Al--4V alloys in simu￾lated physiological solution. Corros Sci,2011,53( 2) : 796 [11] Wang M,Yang Y Q,Luo X. Research status in preparation and properties of ultra-fine grained Ti alloys. Mater Rev,2013,27 ( 7) : 94 ( 王苗,杨延清,罗贤. 超细晶钛合金的制备及性能研究现 状. 材料导报,2013,27( 7) : 94) [12] Lin Z J,Wang L Q,Lü W J,et al. Research progress of fabrica￾ting ultrafine-grained biomedical titanium alloys by severe plastic deformation ( SPD) . J Mater Metall,2014,13( 3) : 206 ( 林正捷,王立强,吕维洁,等. 大塑性变形制备超细晶生物 医用钛合金的研究进展. 材料与冶金学报,2014,13 ( 3) : 206) [13] Zhang T Y,Liu Y,Liu B,et al. Superplastic deformation be￾havior and microstructure evolution of fine-grained Ti--6Al--4V alloy. Mater Sci Eng Powder Metall,2014,19( 2) : 184 ( 张拓阳,刘咏,刘彬,等. 细晶 Ti--6Al--4V 合金的超塑性变 形行为与组织演变. 粉末冶金材料科学与工程,2014,19 ( 2) : 184) [14] Webster T J,Ejiofor J U. Increased osteoblast adhesion on nanophase metals: Ti,Ti6Al4V,and CoCrMo. Biomaterials, 2004,25( 19) : 4731 [15] La P Q,Ma J Q,Zhu Y T,et al. Dry-sliding tribological proper￾ties of ultrafine-grained Ti prepared by severe plastic deforma￾tion. Acta Mater,2005,53( 19) : 5167 [16] Long Y,Guo W J,Li Y. Bimodal-grained Ti fabricated by high￾energy ball milling and spark plasma sintering. Trans Nonferrous Met Soc China,2016,26( 4) : 1170 · 134 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有