工程科学学报,第44卷,第X期 能的形响.工程科学学报,2020,42(8):1007) [18]Wang H,Xiang X D,Zhang L T.Data+Al:The core of materials [6]Liang X Y,Mi G B Li P J,et al.Theoretical calculation of genomic engineering.Sci Technol Rev,2018,36(14):15 characteristics on titanium fire in aero-engine.J Aeronaut Mater, (汪洪,项晓东,张澜庭.数据+人工智能是材料基因工程的核心. 2021,41(6):59 科技导报,2018,36(14):15) (梁贤烨,弭光宝,李培杰,等.航空发动机钛火特性理论计算研 [19]Wu W,Sun Q.Applying machine learning to accelerate new 究.航空材料学报,2021,41(6):59) materials development.Sci Sin Phys Mech Astron,2018,48(10): [7]Mi G B.Yao K.Min X H.Effect of temperature on wear behavior 58 in a Ti-V-Cr base fireproof titanium alloy.Int J Precis Eng Manf, (吴炜,孙强.应用机器学习加速新材料的研发.中国科学物理 2017.18:1553 学力学天文学,2018.48(10):58) [8] Hood R,Johnson C M,Soo S L,et al.High-speed ball nose end [20]Malinov S,Sha W,McKeown J J.Modelling the correlation milling of burn-resistant titanium (BuRTi)alloy.Int J Compur between processing parameters and properties in titanium alloys ntegr Manuf2014,27(2:139 using artificial neural network.Comput Mater Sci,2001,21(3): [9]Li Y G,Blenkinsop P A,Loretto M H,et al.Effect of carbon and 375 oxygen on microstructure and mechanical properties of [21]Noori Banu P S,Devaki Rani S.Knowledge-based artificial neural Ti-25V-15Cr-2Al (wt)alloys.Acta Mater,1999,47(10):2889 network model to predict the properties of alpha+beta titanium [10]Li Y G,Blenkinsop P A,Loretto M H,et al.Effect of aluminium alloys.J Mech Sci Technol,2016,30(8):3625 on deformation structure of highly stabilised B-Ti-V-Cr alloys. [22]Sun L N.Heat treatment process optimization of directional Mater Sci Technol,1999,15(2):151 solidification titanium alloys based on neural network.Ordnance [11]Sun F S,Lavernia E J.Creep behavior of nonburning Mater Sci Eng,2017,40(4):30 Ti-35V-15Cr-xC alloys.J Mater Eng Perform,2005,14(6):784 (孙丽娜.定向凝固钛合金热处理工艺的神经网络优化.兵器材 [12]Xin S W,Zhao Y Q,Zeng W D,et al.Effect of V on the thermal 料科学与工程,2017,40(4):30) stability and creep of Ti-V-Cr burn-resistant titanium alloy.Rare [23]Noori Banu P S,Devaki Rani S.Artificial neural network based Met Mater Eng,2007,36(11):2031 optimization of prerequisite properties for the design of (辛社伟,赵永庆,曾卫东,等.V元素对T-V-Cr系阻燃钛合金热 biocompatible titanium alloys.Comput Mater Sci,2018,149:259 强性的影响.稀有金属材料与工程,2007,36(11):2031) [24]Xu JJ,Wang F.Tensile strength forecasting model foundation and [13]MiGB.Huang X,Cao JX,et al.Ignition resistance performance and its theoretical analysis of Ti-V-Cr type fireproof titanium checking of Ti-Al-V series Ti alloys.Hot Work Technol,2018 4710):72 alloys.Acta Metall Sin,2014,50(5):575 (许佳佳,王飞.T-A-V系钛合金抗拉强度预测模型的建立及 (弭光宝,黄旭,曹京霞,等.T-V-Cr系阻燃钛合金的抗点燃性 能及其理论分析.金属学报,2014,50(5):575) 验证.热加工工艺,2018,47(10):72) [14]Cao JX,Huang X,Mi G B,et al.Research progress on application [25]Zhang X M,Xi Y Q,Li M,et al.Prediction of superplastic deformation behavior of WSTi3515S burn-resistant titanium alloy technique of Ti-V-Cr bur resistant titanium alloys.J Aeronaur Mater,2014,34(4):92 based on BP artificial neural network.Special Cast Nonferrous (曹京霞,黄旭,弭光宝,等.Ti-V-C系阻燃钛合金应用研究进 Alloys,.2019,39(6):668 展.航空材料学报,2014,34(4):92) (张学敏,惠玉强,李咪,等.基于BP神经网络的WSTi3515S阻燃 [15]Lai Y J.Zhang P X,Xin S W.et al.Research progress on 钛合金超塑性变形行为预测.特种铸造及有色合金,2019, engineered technology of bumn-resistant titanium alloys in China. 39(6):668) Rare Met Mater Eng,2015,44(8):2067 [26]Zhou X H,Lou M Q,Zhang X M,et al.Prediction of effect of (赖运金,张平样,辛社伟,等.国内阻燃钛合金工程化技术研究 thermal exposure on tensile properties of TC4 titanium alloy based 进展.稀有金属材料与工程,2015,44(8):2067) on neural network.Hot Work Technol,2019,48(14):128 [16]Sun H Y,Zhao J,Liu Y A,et al.Effect of C addition on (周晓虎,楼美琪,张学敏,等.基于神经元网络的热暴露对 microstructure and mechanical properties of Ti-V-Cr burn TC4钛合金拉伸性能影响预测.热加工工艺,2019,48(14):128) resistant titanium alloys.Chin J Mater Res,2019,33(7):537 [27]Anand P,Rastogi R,Chandra S.A class of new support vector (孙欢迎,赵军,刘翊安,等.C含量对Ti-V-Cr系阻燃钛合金微观 regression models.Appl Soft Comput,2020,94:106446 组织和力学性能的影响.材料研究学报,2019,33(7):537) [28]Sun H Y,Zhao J,Liu Y A,et al.Microstructure and mechanical [17]Zhou T,Song Z,Sundmacher K.Big data creates new properties of a new type bum resistant titanium alloy with lower opportunities for materials research:A review on methods and cost.Rare Met Mater Eng,2019,48(6):1892 applications of machine learning for materials design.Engineering. (孙欢迎,赵军,刘翊安,等.一种新型低成本阻燃钛合金的微观 2019,5(6):1017 组织与力学性能.稀有金属材料与工程,2019,48(6):1892)能的影响. 工程科学学报, 2020, 42(8):1007) Liang X Y, Mi G B Li P J, et al. Theoretical calculation of characteristics on titanium fire in aero-engine. J Aeronaut Mater, 2021, 41(6): 59 (梁贤烨, 弭光宝, 李培杰, 等. 航空发动机钛火特性理论计算研 究. 航空材料学报, 2021, 41(6):59) [6] Mi G B, Yao K, Min X H. Effect of temperature on wear behavior in a Ti-V-Cr base fireproof titanium alloy. Int J Precis Eng Manuf, 2017, 18: 1553 [7] Hood R, Johnson C M, Soo S L, et al. High-speed ball nose end milling of burn-resistant titanium (BuRTi) alloy. Int J Comput Integr Manuf, 2014, 27(2): 139 [8] Li Y G, Blenkinsop P A, Loretto M H, et al. Effect of carbon and oxygen on microstructure and mechanical properties of Ti−25V−15Cr−2Al (wt%) alloys. Acta Mater, 1999, 47(10): 2889 [9] Li Y G, Blenkinsop P A, Loretto M H, et al. Effect of aluminium on deformation structure of highly stabilised β-Ti−V−Cr alloys. Mater Sci Technol, 1999, 15(2): 151 [10] Sun F S, Lavernia E J. Creep behavior of nonburning Ti−35V−15Cr−xC alloys. J Mater Eng Perform, 2005, 14(6): 784 [11] Xin S W, Zhao Y Q, Zeng W D, et al. Effect of V on the thermal stability and creep of Ti−V−Cr burn-resistant titanium alloy. Rare Met Mater Eng, 2007, 36(11): 2031 (辛社伟, 赵永庆, 曾卫东, 等. V元素对Ti−V−Cr系阻燃钛合金热 强性的影响. 稀有金属材料与工程, 2007, 36(11):2031) [12] Mi G B, Huang X, Cao J X, et al. Ignition resistance performance and its theoretical analysis of Ti−V−Cr type fireproof titanium alloys. Acta Metall Sin, 2014, 50(5): 575 (弭光宝, 黄旭, 曹京霞, 等. Ti−V−Cr系阻燃钛合金的抗点燃性 能及其理论分析. 金属学报, 2014, 50(5):575) [13] Cao J X, Huang X, Mi G B, et al. Research progress on application technique of Ti−V−Cr burn resistant titanium alloys. J Aeronaut Mater, 2014, 34(4): 92 (曹京霞, 黄旭, 弭光宝, 等. Ti−V−Cr系阻燃钛合金应用研究进 展. 航空材料学报, 2014, 34(4):92) [14] Lai Y J, Zhang P X, Xin S W, et al. Research progress on engineered technology of burn-resistant titanium alloys in China. Rare Met Mater Eng, 2015, 44(8): 2067 (赖运金, 张平祥, 辛社伟, 等. 国内阻燃钛合金工程化技术研究 进展. 稀有金属材料与工程, 2015, 44(8):2067) [15] Sun H Y, Zhao J, Liu Y A, et al. Effect of C addition on microstructure and mechanical properties of Ti−V−Cr burn resistant titanium alloys. Chin J Mater Res, 2019, 33(7): 537 (孙欢迎, 赵军, 刘翊安, 等. C含量对Ti−V−Cr系阻燃钛合金微观 组织和力学性能的影响. 材料研究学报, 2019, 33(7):537) [16] Zhou T, Song Z, Sundmacher K. Big data creates new opportunities for materials research: A review on methods and applications of machine learning for materials design. Engineering, 2019, 5(6): 1017 [17] Wang H, Xiang X D, Zhang L T. Data+AI: The core of materials genomic engineering. Sci Technol Rev, 2018, 36(14): 15 (汪洪, 项晓东, 张澜庭. 数据+人工智能是材料基因工程的核心. 科技导报, 2018, 36(14):15) [18] Wu W, Sun Q. Applying machine learning to accelerate new materials development. Sci Sin Phys Mech Astron, 2018, 48(10): 58 (吴炜, 孙强. 应用机器学习加速新材料的研发. 中国科学:物理 学 力学 天文学, 2018, 48(10):58) [19] Malinov S, Sha W, McKeown J J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput Mater Sci, 2001, 21(3): 375 [20] Noori Banu P S, Devaki Rani S. Knowledge-based artificial neural network model to predict the properties of alpha+ beta titanium alloys. J Mech Sci Technol, 2016, 30(8): 3625 [21] Sun L N. Heat treatment process optimization of directional solidification titanium alloys based on neural network. Ordnance Mater Sci Eng, 2017, 40(4): 30 (孙丽娜. 定向凝固钛合金热处理工艺的神经网络优化. 兵器材 料科学与工程, 2017, 40(4):30) [22] Noori Banu P S, Devaki Rani S. Artificial neural network based optimization of prerequisite properties for the design of biocompatible titanium alloys. Comput Mater Sci, 2018, 149: 259 [23] Xu J J, Wang F. Tensile strength forecasting model foundation and checking of Ti−Al−V series Ti alloys. Hot Work Technol, 2018, 47(10): 72 (许佳佳, 王飞. Ti−Al−V系钛合金抗拉强度预测模型的建立及 验证. 热加工工艺, 2018, 47(10):72) [24] Zhang X M, Xi Y Q, Li M, et al. Prediction of superplastic deformation behavior of WSTi3515S burn-resistant titanium alloy based on BP artificial neural network. Special Cast Nonferrous Alloys, 2019, 39(6): 668 (张学敏, 惠玉强, 李咪, 等. 基于BP神经网络的WSTi3515S阻燃 钛合金超塑性变形行为预测. 特种铸造及有色合金, 2019, 39(6):668) [25] Zhou X H, Lou M Q, Zhang X M, et al. Prediction of effect of thermal exposure on tensile properties of TC4 titanium alloy based on neural network. Hot Work Technol, 2019, 48(14): 128 (周晓虎, 楼美琪, 张学敏, 等. 基于神经元网络的热暴露对 TC4钛合金拉伸性能影响预测. 热加工工艺, 2019, 48(14):128) [26] Anand P, Rastogi R, Chandra S. A class of new support vector regression models. Appl Soft Comput, 2020, 94: 106446 [27] Sun H Y, Zhao J, Liu Y A, et al. Microstructure and mechanical properties of a new type burn resistant titanium alloy with lower cost. Rare Met Mater Eng, 2019, 48(6): 1892 (孙欢迎, 赵军, 刘翊安, 等. 一种新型低成本阻燃钛合金的微观 组织与力学性能. 稀有金属材料与工程, 2019, 48(6):1892) [28] · 8 · 工程科学学报,第 44 卷,第 X 期