正在加载图片...
王启明等:含T不锈钢治金工艺进展 1457 addition in Ti-bearing Al-kill steel.Ironmaking Steelmaking,2018, steels.ISI/Int,1999.39(9):930 45(2):187 [49]Yin X,Sun Y H,Yang Y D,et al.Formation of inclusions in Ti- [34]Pan C,Hu X J,Zheng J C,et al.Effect of calcium content on stabilized 17Cr austenitic stainless steel.Metall Mater Trans B, inclusions during the ladle furnace refining process of AISI 321 2016,47(6):3274 stainless steel.Int J Miner Metall Mater,2020,27(11):1499 [50]Liu HL,Li G Q,Li Y J,et al.Non-aqueous electrolysis separation [35]Seo C W,Kim S H,Jo S K,et al.Modification and minimization of Ti and Nb bearing inclusions in ultra-pure ferritic stainless steel of spinel(AlO:xMgO)inclusions formed in Ti-added steel melts. and analysis of their precipitation behavior.ChinJ Process Eng. Metall Mater Trans B,2010,41(4):790 2013.13(1):33 [36]Li J Y,Cheng G G,Ruan Q,et al.Optimization of AISI 443 (刘赫莉,李光强,李永军,等.超纯铁素体不锈钢中含Ti和Nb夹 stainless steel cleanness during secondary steelmaking process. 杂物的非水电解分离及其在钢中的析出行为分析.过程工程学 Steel Res Int,2020,91(11):2070111 报,2013,13(1):33) [37]Li J Y,Cheng GG,Ruan Q,et al.Evolution mechanism of [51]Pervushin G V,Suito H.Effect of primary deoxidation products of inclusions in Al-killed,Ti-bearing 11Cr stainless steel with Ca Al2O3,ZrO2,Ce2O;and Mgo on TiN precipitation in treatment./S//Int,2018,58(6):1042 Fe-10mass%Ni alloy.IS//Int,2001,41(7):748 [38]Park J H,Kim D S.Effect of CaO-Al2O;-MgO slags on the [52]Ito A,Suito H,Inoue R.Size distribution of multi-phase formation of MgO-Al2O;inclusions in ferritic stainless steel. deoxidation particles for heterogeneous crystallization of TiN and Metall Mater Trans B,2005,36(4上:495 solidification structure in Ti-added ferritic stainless steel./SI/Int, [39]Park J H,Lee S B,Gaye H R.Thermodynamics of the formation 2012,52(7):1196 of MgO-Al2O,-TiO,inclusions in Ti-stabilized 11Cr ferritic [53]Kang Y,Mao W M,Chen Y J,et al.Effect of Ti content on grain stainless steel.Metall Mater Trans B,2008,39(6):853 size and mechanical properties of UNS S44100 ferritic stainless [40]Li J Y,Cheng GG.Effect of CaO-MgO-SiOz-Al2O;-TiO2 slags steel.Mater Sci Eng A,2016,677:211 with different CaF2 contents on inclusions in Ti-stabilized 20Cr [54]Michelic SK,Loder D,Reip T,et al.Characterization of TiN,TiC stainless steel.ISI/Int,2019,59(11):2013 and Ti(C,N)in titanium-alloyed ferritic chromium steels focusing [41]Goto H,Miyazawa K I,Yamaguchi K I,et al.Effect of cooling on the significance of different particle morphologies.Mater rate on oxide precipitation during solidification of low carbon Charact,.2015,100:61 steels..SUmm,1994,34(5):414 [55]Kellner H E O,Karasev A V,Sundqvist O,et al.Estimation of [42]Zhang F,LiGQ.Li YJ,et al.TiN inclusion and its precipitation non-metallic inclusions in industrial Ni based alloys 825.Steel Res regularity in ultra-clean ferritic stainless steel.J Wuhan Univ Sci lmL,2017,88(4):1600024 Technol,2012.35(5:347 [56]Kellner HEO,Karasev A V,Sundqvist O,et al.TiN particles and (张帆,李光强,李永军,等.超纯铁素体不锈钢中TN夹杂析出 clusters during ladle treatments of Ni-based alloy 825 using 的热力学分析.武汉科技大学学报,2012,35(5):347) different stirring modes./S//Int,2018,58(2):292 [43]Zhang F,Fan Z J,Xu Z,et al.Kinetics of TiN precipitation in [57]Tian QR,Wang GC,Shang DL,et al.In sit observation of the ultra-clean ferritic stainless steel.J Wuhan Uniy Sci Technol,2013, precipitation,aggregation,and dissolution behaviors of TiN 36(3):178 inclusion on the surface of liquid GCr15 bearing steel.Metall (张帆,范植金,徐志,等.超纯铁素体不锈钢中TN析出的动力 Mater Trans B,2018.49(6):3137 学分析.武汉科技大学学报,2013,36(3):178) [58]Tian Q R,Wang G C,Zhao Y,et al.Precipitation behaviors of TiN [44]Yang F,Zhao W C,Hou Y,et al.Precipitation behavior of nitride inclusion in GCr15 bearing steel billet.Metall Mater Trans B, inclusions in K418 alloy under the continuous unidirectional 2018,49(3:1149 solidification process./S//Int,2021,61(1):229 [59]Busch J D,DeBarbadillo J J,Krane M J M.Flux entrapment and [45]Fu J W,Qiu W X,Nie QQ,et al.Precipitation of TiN during titanium nitride defects in electroslag remelting of INCOLOY solidification of AISI 439 stainless steel.J Alloys Compd,2017, alloys 800 and 825.Metall Mater Trans A,2013,44(12):5295 699:938 [60]Park J H.Effect of inclusions on the solidification structures of [46]Fu J W,Nie QQ,Qiu W X,et al.Morphology,orientation ferritic stainless steel:Computational and experimental study of relationships and formation mechanism of TiN in Fe-17Cr steel inclusion evolution.Calphad,2011,35(4):455 during solidification.Mater Charact,2017,133:176 [61]Fujimura H,TsugeS,Komizo Y,et al.Effect of oxide composition [47]Zhu Q,Xu JL,Xiao H T,et al.Mechanism of TiN precipitation in on solidification structure of Ti added ferritic stainless steel.Tetsu- corrosion resistant alloys.J ron Steel Res,2019,31(11):1023 1o-Hagane,2001,87(11)上707 (朱晴,许佳丽,肖海涛,等.耐蚀合金中TN析出机制.钢铁研究 [62]Kimura K,Fukumoto S,Shigesato G I,et al.Effect of Mg addition 学报,2019,31(11):1023) on equiaxed grain formation in ferritic stainless steel./S1/Int, [48]Medina S F,Chapa M,Valles P,et al.Influence of Ti and N 2013,53(12):2167 contents on austenite grain control and precipitate size in structural [63]Shi X F.Refining of Solidification Structure of 430 Stainless Steeladdition in Ti-bearing Al-kill steel. Ironmaking Steelmaking, 2018, 45(2): 187 Pan C, Hu X J, Zheng J C, et al. Effect of calcium content on inclusions during the ladle furnace refining process of AISI 321 stainless steel. Int J Miner Metall Mater, 2020, 27(11): 1499 [34] Seo C W, Kim S H, Jo S K, et al. Modification and minimization of spinel(Al2O3 ·xMgO) inclusions formed in Ti-added steel melts. Metall Mater Trans B, 2010, 41(4): 790 [35] Li J Y, Cheng G G, Ruan Q, et al. Optimization of AISI 443 stainless steel cleanness during secondary steelmaking process. Steel Res Int, 2020, 91(11): 2070111 [36] Li J Y, Cheng G G, Ruan Q, et al. Evolution mechanism of inclusions in Al-killed, Ti-bearing 11Cr stainless steel with Ca treatment. ISIJ Int, 2018, 58(6): 1042 [37] Park J H, Kim D S. Effect of CaO–Al2O3–MgO slags on the formation of MgO–Al2O3 inclusions in ferritic stainless steel. Metall Mater Trans B, 2005, 36(4): 495 [38] Park J H, Lee S B, Gaye H R. Thermodynamics of the formation of MgO–Al2O3–TiOx inclusions in Ti-stabilized 11Cr ferritic stainless steel. Metall Mater Trans B, 2008, 39(6): 853 [39] Li J Y, Cheng G G. Effect of CaO–MgO–SiO2–Al2O3–TiO2 slags with different CaF2 contents on inclusions in Ti-stabilized 20Cr stainless steel. ISIJ Int, 2019, 59(11): 2013 [40] Goto H, Miyazawa K I, Yamaguchi K I, et al. Effect of cooling rate on oxide precipitation during solidification of low carbon steels. ISIJ Int, 1994, 34(5): 414 [41] Zhang F, Li G Q, Li Y J, et al. TiN inclusion and its precipitation regularity in ultra-clean ferritic stainless steel. J Wuhan Univ Sci Technol, 2012, 35(5): 347 (张帆, 李光强, 李永军, 等. 超纯铁素体不锈钢中TiN夹杂析出 的热力学分析. 武汉科技大学学报, 2012, 35(5):347) [42] Zhang F, Fan Z J, Xu Z, et al. Kinetics of TiN precipitation in ultra-clean ferritic stainless steel. J Wuhan Univ Sci Technol, 2013, 36(3): 178 (张帆, 范植金, 徐志, 等. 超纯铁素体不锈钢中TiN析出的动力 学分析. 武汉科技大学学报, 2013, 36(3):178) [43] Yang F, Zhao W C, Hou Y, et al. Precipitation behavior of nitride inclusions in K418 alloy under the continuous unidirectional solidification process. ISIJ Int, 2021, 61(1): 229 [44] Fu J W, Qiu W X, Nie Q Q, et al. Precipitation of TiN during solidification of AISI 439 stainless steel. J Alloys Compd, 2017, 699: 938 [45] Fu J W, Nie Q Q, Qiu W X, et al. Morphology, orientation relationships and formation mechanism of TiN in Fe–17Cr steel during solidification. Mater Charact, 2017, 133: 176 [46] Zhu Q, Xu J L, Xiao H T, et al. Mechanism of TiN precipitation in corrosion resistant alloys. J Iron Steel Res, 2019, 31(11): 1023 (朱晴, 许佳丽, 肖海涛, 等. 耐蚀合金中TiN析出机制. 钢铁研究 学报, 2019, 31(11):1023) [47] Medina S F, Chapa M, Valles P, et al. Influence of Ti and N contents on austenite grain control and precipitate size in structural [48] steels. ISIJ Int, 1999, 39(9): 930 Yin X, Sun Y H, Yang Y D, et al. Formation of inclusions in Ti￾stabilized 17Cr austenitic stainless steel. Metall Mater Trans B, 2016, 47(6): 3274 [49] Liu H L, Li G Q, Li Y J, et al. Non-aqueous electrolysis separation of Ti and Nb bearing inclusions in ultra-pure ferritic stainless steel and analysis of their precipitation behavior. Chin J Process Eng, 2013, 13(1): 33 (刘赫莉, 李光强, 李永军, 等. 超纯铁素体不锈钢中含Ti和Nb夹 杂物的非水电解分离及其在钢中的析出行为分析. 过程工程学 报, 2013, 13(1):33) [50] Pervushin G V, Suito H. Effect of primary deoxidation products of Al2O3 , ZrO2 , Ce2O3 and MgO on TiN precipitation in Fe−10mass%Ni alloy. ISIJ Int, 2001, 41(7): 748 [51] Ito A, Suito H, Inoue R. Size distribution of multi-phase deoxidation particles for heterogeneous crystallization of TiN and solidification structure in Ti-added ferritic stainless steel. ISIJ Int, 2012, 52(7): 1196 [52] Kang Y, Mao W M, Chen Y J, et al. Effect of Ti content on grain size and mechanical properties of UNS S44100 ferritic stainless steel. Mater Sci Eng A, 2016, 677: 211 [53] Michelic S K, Loder D, Reip T, et al. Characterization of TiN, TiC and Ti(C, N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies. Mater Charact, 2015, 100: 61 [54] Kellner H E O, Karasev A V, Sundqvist O, et al. Estimation of non-metallic inclusions in industrial Ni based alloys 825. Steel Res Int, 2017, 88(4): 1600024 [55] Kellner H E O, Karasev A V, Sundqvist O, et al. TiN particles and clusters during ladle treatments of Ni-based alloy 825 using different stirring modes. ISIJ Int, 2018, 58(2): 292 [56] Tian Q R, Wang G C, Shang D L, et al. In situ observation of the precipitation, aggregation, and dissolution behaviors of TiN inclusion on the surface of liquid GCr15 bearing steel. Metall Mater Trans B, 2018, 49(6): 3137 [57] Tian Q R, Wang G C, Zhao Y, et al. Precipitation behaviors of TiN inclusion in GCr15 bearing steel billet. Metall Mater Trans B, 2018, 49(3): 1149 [58] Busch J D, DeBarbadillo J J, Krane M J M. Flux entrapment and titanium nitride defects in electroslag remelting of INCOLOY alloys 800 and 825. Metall Mater Trans A, 2013, 44(12): 5295 [59] Park J H. Effect of inclusions on the solidification structures of ferritic stainless steel: Computational and experimental study of inclusion evolution. Calphad, 2011, 35(4): 455 [60] Fujimura H, Tsuge S, Komizo Y, et al. Effect of oxide composition on solidification structure of Ti added ferritic stainless steel. Tetsu￾to-Hagane, 2001, 87(11): 707 [61] Kimura K, Fukumoto S, Shigesato G I, et al. Effect of Mg addition on equiaxed grain formation in ferritic stainless steel. ISIJ Int, 2013, 53(12): 2167 [62] [63] Shi X F. Refining of Solidification Structure of 430 Stainless Steel 王启明等: 含 Ti 不锈钢冶金工艺进展 · 1457 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有