·1456 工程科学学报,第43卷,第11期 intergranular corrosion resistance of 430 ferritic stainless steel.J [17]Todoroki H,Kobayashi Y.Clogging behavior of CC immersion Iron Steel Res Int,2015,22(11):1062 nozzles in stainless steels in Al deoxidation //Asia Steel 2009. [2]Janis J,Karasev A,Nakajima K,et al.Effect of secondary nitride Busan,2009:28 particles on grain growth in a Fe-20 mass%Cr alloy deoxidised [18]Todoroki H,Kirihara F,Kanbe Y,et al.Effect of compositions of with Ti and Zr.ISI/Int,2013,53(3):476 non-metallic inclusions on CC nozzle clogging of a Fe-Cr-Ni-Mo [3]Janis J,Nakajima K,Karasev A,et al.An experimental study on system stainless steel.Tetsu-to-Hagane,2014,100(4):539 the influence of particles on grain boundary migration.J Mater [19]Basu S,Choudhary SK,Girase N U.Nozzle clogging behaviour Sci,2010,45(8):2233 of Ti-bearing Al-killed ultra low carbon steel./S//Int,2004, [4]Shinoda T,Ishii T,Tanaka R,et al.Effects of some carbide 44(10):1653 stabilizing elements on creep-rupture strength and microstructural [20]Gao Y,Sorimachi K.Formation of clogging materials in an changes of 18-10 austenitic steel.Merall Trans,1973,4(5):1213 immersed nozzle during continuous casting of titanium stabilized [5]Li J Y,Cheng GG,Ruan Q,et al.Characteristics of nozzle stainless steel.ISI/Int,1993,33(2):291 clogging and evolution of oxide inclusion for Al-killed Ti- [21]Maddalena R,Rastogi R,Bassem S,et al.Nozzle deposits in stabilized 18Cr stainless steel.Metall Mater Trans B.2019.50(6): titanium treated stainless steels.Iron Steelmaker,2000,27(12):71 2769 [22]Sun Y H,Bai X F,Yin X,et al.Research on submerged entry [6]Li J Y.Research on Formation Mechanism of Inclusion and nozzles clogging during AlSI 321 stainless steel billet casting. Refining Technology for Ultra-Pure Ferrite Stainless Steel Chin J Eng,2016,38(Suppl 1):109 [Dissertation].Beijing:University of Science and Technology (孙彦辉,白雪峰,殷雪,等.321不锈钢小方坯浸人式水口堵塞 Beijing,2020 研究.工程科学学报,2016,38(增刊1):109) (李璟宇.超纯铁素体不锈钢夹杂物形成机理及精炼工艺研究 [23]Jung I H,Eriksson G,Wu P,et al.Thermodynamic modeling of [学位论文].北京:北京科技大学,2020) the Al2O:-TiO:-TiO2 system and its applications to the [7]Cha W Y,Nagasaka T,Miki T,et al.Equilibrium between Fe-Al-Ti-O inclusion diagram./SI/Int,2009,49(9):1290 titanium and oxygen in liquid Fe-Ti alloy coexisted with titanium [24]Wang C,Nuhfer N T,Sridhar S.Transient behavior of inclusion oxides at 1873 K.ISIJ Int,2006,46(7):996 chemistry,shape,and structure in Fe-Al-Ti-O melts:Effect of [8]Pak JJ,Jo JO,Kim S I,et al.Thermodynamics of titanium and titanium source and laboratory deoxidation simulation.Metall oxygen dissolved in liquid iron equilibrated with titanium oxides Ma1 er Trans B,2009,40(6):1005 ISW1m,2007,47(1):16 [25]Li J Y,Cheng GG,Ruan Q,et al.Evolution behaviour of [9]Seok S H,Miki T,Hino M.Ti deoxidation equilibrium in molten nonmetallic inclusions in Ti-bearing 11Cr stainless steel with Fe-Cr and Fe-Cr-Ni alloys at temperatures between 1823 K and calcium treatment.Ironmaking Steelmaking,2020,47(1):31 1923K.SUm,2009,49(12):1850 [26]Li J Y,Cheng G G,Ruan Q,et al.Evolution mechanism of oxide [10]Pak J J,Jeong Y S.Hong I K,et al.Thermodynamics of TiN inclusions in titanium-stabilized AISI 443 stainless steel.Metall formation in Fe-Cr melts.IS///nt,2005,45(8):1106 Mater Trans B.2018,49(5):2357 [11]Wada H,Pehlke R D.Nitrogen solution and titanium nitride [27]Bai X F,Sun Y H,Zhang Y M.Transient evolution of inclusions precipitation in liquid Fe-Cr-Ni alloys.Metall Trans B,1977 during Al and Ti additions in Fe-20 mass pct Cr alloy.Merals, 8(2:443 2019,9(6):702 [12]Ozturk B,Matway R,Fruehan R J.Thermodynamics of inclusion [28]Pan C,Hu X J,Lin P,et al.Effects of Ti and Al addition on the formation in Fe-Cr-Ti-N alloys.Merall Mater Trans B,1995, formation and evolution of inclusions in Fe-17Cr-9Ni austenite 26(3):563 stainless steel.Metall Mater Trans B,2020,51(6):3039 [13]Hou D.Jiang Z.Dong Y,et al.Thermodynamic design of [29]Ren Y,Zhang L F,Yang W,et al.Formation and thermodynamics electroslag remelting slag for high titanium and low aluminium of Mg-Al-Ti-O complex inclusions In Mg-Al-Ti-deoxidized stainless steel based on IMCT.Ironmaking Steelmaking,2016, steel.Metall Mater Trans B,2014,45(6):2057 43(7):517 [30]Zhang T S,Liu C J,Jiang M F.Effect of Mg on behavior and [14]Jiang Z H,Hou D,Dong Y W,et al.Effect of slag on titanium, particle size of inclusions in Al-Ti deoxidized molten steels. silicon,and aluminum contents in superalloy during electroslag Metall Mater Trans B,2016,47(4):2253 remelting.Metall Mater Trans B,016,47(2):1465 [31]Li J Y,Cheng GG,Ruan Q,et al.Formation and evolution of [15]Park D C,Jung I H,Rhee P C H,et al.Reoxidation of Al-Ti oxide inclusions in titanium-stabilized 18Cr stainless steel.ISI/ containing steels by CaO-Al2O:-Mgo-SiOz slag./S//Int,2004. 1mm,2018,58(12):2280 44(10):1669 [32]Zhang T S,Liu C J,Qiu J Y,et al.Effect of Ti content on the [16]Kishi M,Inoue R,Suito H.Thermodynamics of oxygen and characteristics of inclusions in Al-Ti-Ca complex deoxidized nitrogen in liquid Fe-20mass%Cr alloy equilibrated with titania- steel.ISI/Int,2017,57(2):314 based slags.ISIJ Int,1994,34(11):859 [33]Zhang T,Liu C,Mu H,et al.Inclusion evolution after calciumintergranular corrosion resistance of 430 ferritic stainless steel. J Iron Steel Res Int, 2015, 22(11): 1062 Janis J, Karasev A, Nakajima K, et al. Effect of secondary nitride particles on grain growth in a Fe-20 mass% Cr alloy deoxidised with Ti and Zr. ISIJ Int, 2013, 53(3): 476 [2] Janis J, Nakajima K, Karasev A, et al. An experimental study on the influence of particles on grain boundary migration. J Mater Sci, 2010, 45(8): 2233 [3] Shinoda T, Ishii T, Tanaka R, et al. Effects of some carbide stabilizing elements on creep-rupture strength and microstructural changes of 18-10 austenitic steel. Metall Trans, 1973, 4(5): 1213 [4] Li J Y, Cheng G G, Ruan Q, et al. Characteristics of nozzle clogging and evolution of oxide inclusion for Al-killed Tistabilized 18Cr stainless steel. Metall Mater Trans B, 2019, 50(6): 2769 [5] Li J Y. Research on Formation Mechanism of Inclusion and Refining Technology for Ultra-Pure Ferrite Stainless Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2020 ( 李璟宇. 超纯铁素体不锈钢夹杂物形成机理及精炼工艺研究 [学位论文]. 北京: 北京科技大学, 2020) [6] Cha W Y, Nagasaka T, Miki T, et al. Equilibrium between titanium and oxygen in liquid Fe−Ti alloy coexisted with titanium oxides at 1873 K. ISIJ Int, 2006, 46(7): 996 [7] Pak J J, Jo J O, Kim S I, et al. Thermodynamics of titanium and oxygen dissolved in liquid iron equilibrated with titanium oxides. ISIJ Int, 2007, 47(1): 16 [8] Seok S H, Miki T, Hino M. Ti deoxidation equilibrium in molten Fe–Cr and Fe–Cr–Ni alloys at temperatures between 1823 K and 1923 K. ISIJ Int, 2009, 49(12): 1850 [9] Pak J J, Jeong Y S, Hong I K, et al. Thermodynamics of TiN formation in Fe−Cr melts. ISIJ Int, 2005, 45(8): 1106 [10] Wada H, Pehlke R D. Nitrogen solution and titanium nitride precipitation in liquid Fe−Cr−Ni alloys. Metall Trans B, 1977, 8(2): 443 [11] Ozturk B, Matway R, Fruehan R J. Thermodynamics of inclusion formation in Fe−Cr−Ti−N alloys. Metall Mater Trans B, 1995, 26(3): 563 [12] Hou D, Jiang Z, Dong Y, et al. Thermodynamic design of electroslag remelting slag for high titanium and low aluminium stainless steel based on IMCT. Ironmaking Steelmaking, 2016, 43(7): 517 [13] Jiang Z H, Hou D, Dong Y W, et al. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B, 2016, 47(2): 1465 [14] Park D C, Jung I H, Rhee P C H, et al. Reoxidation of Al-Ti containing steels by CaO−Al2O3−MgO−SiO2 slag. ISIJ Int, 2004, 44(10): 1669 [15] Kishi M, Inoue R, Suito H. Thermodynamics of oxygen and nitrogen in liquid Fe−20mass%Cr alloy equilibrated with titaniabased slags. ISIJ Int, 1994, 34(11): 859 [16] Todoroki H, Kobayashi Y. Clogging behavior of CC immersion nozzles in stainless steels in Al deoxidation // Asia Steel 2009. Busan, 2009: 28 [17] Todoroki H, Kirihara F, Kanbe Y, et al. Effect of compositions of non-metallic inclusions on CC nozzle clogging of a Fe−Cr−Ni−Mo system stainless steel. Tetsu-to-Hagane, 2014, 100(4): 539 [18] Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel. ISIJ Int, 2004, 44(10): 1653 [19] Gao Y, Sorimachi K. Formation of clogging materials in an immersed nozzle during continuous casting of titanium stabilized stainless steel. ISIJ Int, 1993, 33(2): 291 [20] Maddalena R, Rastogi R, Bassem S, et al. Nozzle deposits in titanium treated stainless steels. Iron Steelmaker, 2000, 27(12): 71 [21] Sun Y H, Bai X F, Yin X, et al. Research on submerged entry nozzles clogging during AISI 321 stainless steel billet casting. Chin J Eng, 2016, 38(Suppl 1): 109 ( 孙彦辉, 白雪峰, 殷雪, 等. 321不锈钢小方坯浸入式水口堵塞 研究. 工程科学学报, 2016, 38(增刊1): 109) [22] Jung I H, Eriksson G, Wu P, et al. Thermodynamic modeling of the Al2O3–Ti2O3–TiO2 system and its applications to the Fe–Al–Ti–O inclusion diagram. ISIJ Int, 2009, 49(9): 1290 [23] Wang C, Nuhfer N T, Sridhar S. Transient behavior of inclusion chemistry, shape, and structure in Fe–Al–Ti–O melts: Effect of titanium source and laboratory deoxidation simulation. Metall Mater Trans B, 2009, 40(6): 1005 [24] Li J Y, Cheng G G, Ruan Q, et al. Evolution behaviour of nonmetallic inclusions in Ti-bearing 11Cr stainless steel with calcium treatment. Ironmaking Steelmaking, 2020, 47(1): 31 [25] Li J Y, Cheng G G, Ruan Q, et al. Evolution mechanism of oxide inclusions in titanium-stabilized AISI 443 stainless steel. Metall Mater Trans B, 2018, 49(5): 2357 [26] Bai X F, Sun Y H, Zhang Y M. Transient evolution of inclusions during Al and Ti additions in Fe-20 mass pct Cr alloy. Metals, 2019, 9(6): 702 [27] Pan C, Hu X J, Lin P, et al. Effects of Ti and Al addition on the formation and evolution of inclusions in Fe–17Cr–9Ni austenite stainless steel. Metall Mater Trans B, 2020, 51(6): 3039 [28] Ren Y, Zhang L F, Yang W, et al. Formation and thermodynamics of Mg–Al–Ti–O complex inclusions In Mg–Al–Ti-deoxidized steel. Metall Mater Trans B, 2014, 45(6): 2057 [29] Zhang T S, Liu C J, Jiang M F. Effect of Mg on behavior and particle size of inclusions in Al–Ti deoxidized molten steels. Metall Mater Trans B, 2016, 47(4): 2253 [30] Li J Y, Cheng G G, Ruan Q, et al. Formation and evolution of oxide inclusions in titanium-stabilized 18Cr stainless steel. ISIJ Int, 2018, 58(12): 2280 [31] Zhang T S, Liu C J, Qiu J Y, et al. Effect of Ti content on the characteristics of inclusions in Al–Ti–Ca complex deoxidized steel. ISIJ Int, 2017, 57(2): 314 [32] [33] Zhang T, Liu C, Mu H, et al. Inclusion evolution after calcium · 1456 · 工程科学学报,第 43 卷,第 11 期