正在加载图片...
是函数在b的值减去函数在a的值,等于这个定积分( definite integral).所以 从这个关系知道要求积分的话,只需要求一个函数,它的微分是已知的,就 是f(x),即微分是已知的.所以这样微分跟积分连起来了.互相的,积分等 于微分的反运三,有了f(x),要找一个函数,它的微分等于f(x),是个反运 因此微、积分有密切的关系. 多元微积分 上面讲的是一个变数的微积分.下面讲高维的,要多变数的.多变数的话, 有新的现象,是什么样的呢?我想对于多变数的,我们先不看别的,先看两 个变数的情形,x跟y,那么我们知道这个时候微分的观念的推广是偏微分 等于跟y分开求微分.积分的观念推广是重积分.二重积分( double integral) 是在2维的情形,在高维的情形是多重的.先看2维,2维的情形就有了区域 我们叫它△,那么它的边界叫它γ.所以积分的一个自然推广是一个2重积分, 普通积分把分成小段,然后取小段再乘上这个函数,求一个和.在2重积分 的时候,方法也是把区域分成小块,然后取每一小块的面积,在其上函数值 乘上它的面积,然后求它的和很不得了的,假使函数好的话,无论你如何圈 你的区域极限是一样的,所以这极限就是2重积分 I=///(a,v)dardy 在2维的时候,甚至高维的时候,一个重要的现象是,我们现在有2个变数x,y, 换变数怎么样?所以我现在换变数,换变数当然是在微积分里是很重要的 个办法,因为很多的问题是看你的变数是否选择得适当,有时换变数,问 题就立刻简单化了,就可以解决了.现在我换变数 (1.4) y=y(a',y) 其中,(x,y)是另外一组坐标.我们发现一个事实,在高维的时候微分的乘 法,我们写成 d r a dy,这是一个乘法,怎么乘呢?dr∧dy在微积分上是最微 妙的观点.什么叫微分?什么是dxc?这个是困扰了数学家几百年的事.怎么✹❁❥ób④❾❃❱❁❥óa④❾, ⑧➉❨➬➼è■(definite integral). ➘✶ ✱❨➬✞ø⑧✇✞❋è■④➏, ➄❽✞❋✘➬❁❥, ➬④❻■✹✳⑧④,Ò ✹f(x), ý❻■✹✳⑧④. ➘✶❨ø❻■❐è■❐å✉ê. ➄★④, è■⑧ ➉❻■④✬ä➤, ❿êf(x), ✞■✘➬❁❥, ➬④❻■⑧➉f(x), ✹➬✬ä➤. ❖✩❻✁è■❿➲★④✞ø. 3 õ➹❻è■ Þ➪❨④✹✘➬★❥④❻è■. ✆➪❨➦➅④, ✞õ★❥④. õ★❥④➏, ❿❝④✙✻, ✹✤➃ø④✑Ú➲✳é➉õ★❥④, ➲➣☛❳✗✴④, ☛✗Ü ➬★❥④❁♦, x❐y, ￾➃➲➣⑧✇❨➬✣⑧❻■④✡✬④▼✒✹➔❻■, ⑧➉x❐y■✌❋❻■. è■④✡✬▼✒✹➢è■. ✓➢è■(double integral) ✹ó2➅④❁♦, ó➦➅④❁♦✹õ➢④. ☛✗2➅, 2➅④❁♦Ò❿ê❑➢, ➲➣✇➬∆, ￾➃➬④✣➂✇➬γ. ➘✶è■④✘➬✞❧▼✒✹✘➬2➢è■, ✃✴è■➨x■➘❇ã, ❧⑨❘❇ãò➷Þ❨➬❁❥, ❋✘➬❩. ó2➢è■ ④✣⑧, ✵✛✎✹➨❑➢■➘❇▲, ❧⑨❘➎✘❇▲④➪è, óÙÞ❁❥❾ ➷Þ➬④➪è, ❧⑨❋➬④❩. ✐❳③ê④, ✧✫❁❥P④➏, ➹❳✜➌❬❲ ✜④❑➢,ô✦✹✘ø④, ➘✶❨ô✦Ò✹2➢è■ I = Z Z f(x, y)dxdy. (1.3) ó2➅④✣⑧, ☎➊➦➅④✣⑧, ✘➬➢✞④✙✻✹, ➲➣✙ó❿2➬★❥x, y, ➛★❥✍➃øÚ➘✶➲✙ó➛★❥, ➛★❥❤❧✹ó❻è■➦✹✐➢✞④ ✘➬❮✛, ❖➃✐õ④➥☛✹✗✜④★❥✹❞➔✡③✼❤, ❿✣➛★❥, ➥ ☛Ò➪✴❀❭➎ê, Ò✱✶❽ûê. ✙ó➲➛★❥Õ ( x = x(x 0 , y0 ) y = y(x 0 , y0 ) (1.4) Ù➙, (x 0 , y0 )✹☞✐✘✜✰✮. ➲➣✕✙✘➬✴✧,ó➦➅④✣⑧,❻■④➷ ✛, ➲➣❯➘dx ∧ dy, ❨✹✘➬➷✛, ✍➃➷✑Údx ∧ dyó❻è■Þ✹✦❻ ➱④✡➎. ✤➃✇❻■Ú✤➃✹dxÚ❨➬✹❤✈ê❥➛✛✁➸★④✴. ✍➃ 3
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有