正在加载图片...
李小璇等:铜锡合金激光选区熔化非平衡凝固组织与性能 ·1105· 运动受阻,固溶强化作用得到进一步增强.在以上 mechanical properties and microstructural evolution during 多种因素作用下,SLM成形Cu-5%Sn合金的力学 selective laser melting of Cu-15Sn high-tin bronze.Mater Sci Eng 性能得到显著强化. 4,2018721:125 [7] Scudino S,Unterdorfer C,Prashanth K G,et al.Additive 3结论 manufacturing of Cu-10Sn bronze.Mater Lett,2015,156:202 [8]Gustmann T,dos Santos J M,Gargarella P,et al.Properties of Cu- (1)优化选用激光功率160W,扫描速度 based shape memory alloys prepared by selective laser melting 300mms,扫描间距0.07mm获得SLM成形合金 Shape Memory Superelast,,2017,3(1上:24 样品相对密度可高达992%,熔池层与层堆积密 [9] Yan M,Wu Y C,Chen J C,et al.Microstructure evolution in pre- 实,表面质量良好,成形合金具有非平衡凝固组织 paration of Cu-Sn contact wire for high-speed railway.Ady Mater 特征,其中以a-Cu(S)固溶体相为主,并可能涉及 Be3,2011,415-417:446 Y、δ等超点阵结构相 [10]Ventura A P.Microstructure Evolution and Mechanical Property (2)SLM成形合金的显微形貌主要由柱状晶 Development of Selective Laser Melted Cooper Alloys 与富锡网状组织组成,伴随有不同尺度界面Sn元 [Dissertation].Bethlehem:Lehigh University,2017 素偏析,及晶界、晶内纳米尺寸超结构合金相颗粒 [11]Walker D C,Caley W F,Brochu M.Selective laser sintering of 析出 composite copper-tin powders.J Mater Res,2014,29(17):1997 (3)受细晶强化、纳米颗粒析出强化、固溶强 [12]Luo J H.Evolution and Mechanism of Chemical Composition. 化及部分热残余应力多重作用,SLM成形合金的 Microstructure and Properties for Two-phase Zone Continuous 力学性能与相同成分铸态合金或较低Sn含量 Casting Cu-Sn Alloy [Dissertation].Beijing:University of Science SLM合金相比得到显著强化,表面硬度可达HV and Technology Beijing,2017 133.83,屈服强度达326MPa,抗拉强度达387MPa, (罗继辉.两相区连铸铜锡合金的化学成分和组织性能变化规 律及机理[学位论文].北京:北京科技大学,2017) 断裂总延伸率可达22.7%. [13]Zhou X.Research on Micro-scale Melt Pool Characteristics and 参考文献 Solidified Microstructures in Selective Laser Melting [Dissertation].Beijing:Tsinghua University,2016 [1]Tuncer N,Bose A.Solid-state metal additive manufacturing:A (周鑫.激光选区熔化微尺度熔池特性与凝固微观组织[学位论 review.JOM,2020,72(9):3090 文].北京:清华大学,2016) [2]Tan Z.Zhang X Y.Zhou Z L,et al.Thermal effect on the [14]Zhang L,Liu Z Q.Inhibition of Intermetallic compounds growth at microstructure of the lattice structure Cu-10Sn alloy fabricated Sn-58Bi/Cu interface bearing CuZnAl memory particles(26um) through selective laser melting.JAlloys Compd,2019,787:903 JMater Sci Mater Electron,2020,31(3):2466 [3]Li A,Liu X F,Yu B,et al.Key factors and developmental [15]Li X,Ivas T,Spierings A B,et al.Phase and microstructure for- directions with regard to metal additive manufacturing.ChinJ mation in rapidly solidified Cu-Sn and Cu-Sn-Ti alloys.JAlloys Emg,2019,41(2:159 Compd,2018.735:1374 (李昂,刘雪峰,俞波,等.金属增材制造技术的关键因素及发展 [16]Zhai W,Wang W L.Geng D L,et al.A DSC analysis of 方向.工程科学学报,2019,41(2):159) thermodynamic properties and solidification characteristics for [4]Bai Y C,Yang Y Q,Wang D,et al.Selective laser melting of Tin binary Cu-Sn alloys.Acta Mater,2012,60(19):6518 bronze alloy and its properties.Rare Met Mater Eng,2018,47(3): [17]Wang Z J,Konno T J.Discontinuous precipitation with metastable 1007 phase in a Cu-8.6%Sn alloy.Philos Mag,2013,93(8):949 (白玉超,杨永强,王迪,等.锡青铜激光选区熔化工艺及其性能 [18]Yin ZZ,Sun F L,Guo M J.The fast formation of Cu-Sn inter- 稀有金属材料与工程,2018,47(3):1007) [5]Yamamoto T,Yuda R.Nagae T.Effect of heat treatment on metallic compound in Cu/Sn/Cu system by introduction heating microstructure and mechanical properties of Cu-Sn alloys fabri- process.Mater Lett,2018,215:207 cated by selective laser melting.JJpn Inst Copper,2018,57(1): [19]Wang Z J,Konno T J.Comparative TEM study on as-cast ingot 137 and nodular bainite of Cu-14.9%Sn alloy.Philos Mag,2014, (山本贵文,渴田棱也,J長.一圹積唇造形二上)作製L 94(4):420 Cu-S系合金造形体)金属组織上機械的特性二及!王寸热处理 [20]Li X,Xue JL.Lang G H,et al.Porous structure evolution of )影響.铜上銅合金:銅及少銅合金技術研究会誌,2018, graphitic cathode materials for aluminum electrolysis at various 57(1):137) baking temperatures.J Univ Sci Technol Beijing,2014,36(9): [6]Mao Z F,Zhang D Z,Jiang JJ,et al.Processing optimization, 1233运动受阻,固溶强化作用得到进一步增强. 在以上 多种因素作用下,SLM 成形 Cu‒5%Sn 合金的力学 性能得到显著强化. 3    结论 ( 1) 优 化 选 用 激 光 功 率 160  W, 扫 描 速 度 300 mm·s−1,扫描间距 0.07 mm 获得 SLM 成形合金 样品相对密度可高达 99.2%,熔池层与层堆积密 实,表面质量良好,成形合金具有非平衡凝固组织 特征,其中以 α-Cu(Sn) 固溶体相为主,并可能涉及 γ、δ 等超点阵结构相. (2)SLM 成形合金的显微形貌主要由柱状晶 与富锡网状组织组成,伴随有不同尺度界面 Sn 元 素偏析,及晶界、晶内纳米尺寸超结构合金相颗粒 析出. (3)受细晶强化、纳米颗粒析出强化、固溶强 化及部分热残余应力多重作用,SLM 成形合金的 力学性能与相同成分铸态合金或较 低 Sn 含 量 SLM 合金相比得到显著强化,表面硬度可达 HV 133.83,屈服强度达 326 MPa,抗拉强度达 387 MPa, 断裂总延伸率可达 22.7%. 参    考    文    献 Tuncer  N,  Bose  A.  Solid-state  metal  additive  manufacturing:  A review. JOM, 2020, 72(9): 3090 [1] Tan  Z,  Zhang  X  Y,  Zhou  Z  L,  et  al.  Thermal  effect  on  the microstructure  of  the  lattice  structure  Cu ‒10Sn  alloy  fabricated through selective laser melting. J Alloys Compd, 2019, 787: 903 [2] Li  A,  Liu  X  F,  Yu  B,  et  al.  Key  factors  and  developmental directions  with  regard  to  metal  additive  manufacturing. Chin J Eng, 2019, 41(2): 159 (李昂, 刘雪峰, 俞波, 等. 金属增材制造技术的关键因素及发展 方向. 工程科学学报, 2019, 41(2):159) [3] Bai Y C, Yang Y Q, Wang D, et al. Selective laser melting of Tin bronze alloy and its properties. Rare Met Mater Eng, 2018, 47(3): 1007 (白玉超, 杨永强, 王迪, 等. 锡青铜激光选区熔化工艺及其性能. 稀有金属材料与工程, 2018, 47(3):1007) [4] Yamamoto  T,  Yuda  R,  Nagae  T.  Effect  of  heat  treatment  on microstructure  and  mechanical  properties  of  Cu ‒Sn  alloys  fabri￾cated by selective laser melting. J Jpn Inst Copper, 2018, 57(1): 137 (山本貴文, 湯田稜也, J 長. レーザ積層造形により作製した Cu‒Sn系合金造形体の金属組織と機械的特性に及ぼす熱処理 の影響. 銅と銅合金: 銅及び銅合金技術研究会誌,  2018, 57(1):137) [5] [6] Mao  Z  F,  Zhang  D  Z,  Jiang  J  J,  et  al.  Processing  optimization, mechanical  properties  and  microstructural  evolution  during selective laser melting of Cu‒15Sn high-tin bronze. Mater Sci Eng A, 2018, 721: 125 Scudino  S,  Unterdorfer  C,  Prashanth  K  G,  et  al.  Additive manufacturing of Cu‒10Sn bronze. Mater Lett, 2015, 156: 202 [7] Gustmann T, dos Santos J M, Gargarella P, et al. Properties of Cu￾based  shape  memory  alloys  prepared  by  selective  laser  melting. Shape Memory Superelast, 2017, 3(1): 24 [8] Yan M, Wu Y C, Chen J C, et al. Microstructure evolution in pre￾paration of Cu‒Sn contact wire for high-speed railway. Adv Mater Res, 2011, 415-417: 446 [9] Ventura A P. Microstructure Evolution and Mechanical Property Development of Selective Laser Melted Cooper Alloys [Dissertation]. Bethlehem: Lehigh University, 2017 [10] Walker  D  C,  Caley  W  F,  Brochu  M.  Selective  laser  sintering  of composite copper-tin powders. J Mater Res, 2014, 29(17): 1997 [11] Luo  J  H. Evolution and Mechanism of Chemical Composition, Microstructure and Properties for Two-phase Zone Continuous Casting Cu–Sn Alloy [Dissertation]. Beijing: University of Science and Technology Beijing, 2017 ( 罗继辉. 两相区连铸铜锡合金的化学成分和组织性能变化规 律及机理[学位论文]. 北京: 北京科技大学, 2017) [12] Zhou X. Research on Micro-scale Melt Pool Characteristics and Solidified Microstructures in Selective Laser Melting [Dissertation]. Beijing: Tsinghua University, 2016 ( 周鑫. 激光选区熔化微尺度熔池特性与凝固微观组织[学位论 文]. 北京: 清华大学, 2016) [13] Zhang L, Liu Z Q. Inhibition of Intermetallic compounds growth at Sn‒58Bi/Cu interface bearing CuZnAl memory particles(2−6 μm). J Mater Sci Mater Electron, 2020, 31(3): 2466 [14] Li X, Ivas T, Spierings A B, et al. Phase and microstructure for￾mation in rapidly solidified Cu‒Sn and Cu‒Sn‒Ti alloys. J Alloys Compd, 2018, 735: 1374 [15] Zhai  W,  Wang  W  L,  Geng  D  L,  et  al.  A  DSC  analysis  of thermodynamic  properties  and  solidification  characteristics  for binary Cu‒Sn alloys. Acta Mater, 2012, 60(19): 6518 [16] Wang Z J, Konno T J. Discontinuous precipitation with metastable ζ phase in a Cu‒8.6%Sn alloy. Philos Mag, 2013, 93(8): 949 [17] Yin Z Z, Sun F L, Guo M J. The fast formation of Cu ‒Sn inter￾metallic  compound  in  Cu/Sn/Cu  system  by  introduction  heating process. Mater Lett, 2018, 215: 207 [18] Wang  Z  J,  Konno  T  J.  Comparative  TEM  study  on  as-cast  ingot and  nodular  bainite  of  Cu ‒14.9%Sn  alloy. Philos Mag,  2014, 94(4): 420 [19] Li  X,  Xue  J  L,  Lang  G  H,  et  al.  Porous  structure  evolution  of graphitic  cathode  materials  for  aluminum  electrolysis  at  various baking  temperatures. J Univ Sci Technol Beijing,  2014,  36(9): 1233 [20] 李小璇等: 铜锡合金激光选区熔化非平衡凝固组织与性能 · 1105 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有