正在加载图片...
·652· 工程科学学报,第39卷,第5期 已经得到了广泛的研究,对单道次焊接而言,避免焊接 chinery Industry Press,1987 冷裂纹和粗晶热影响区的组织控制是提高焊接热影响 (吕德林,李砚珠.焊接金相分析.北京:机械工业出版社, 区韧性的关键:对双/多道次焊接而言,由于后续道次 1987) [11]You Y,Shang C J,Chen L.et al.Investigation on the crystal- 的热循环形成的链状M-A,特别是在前序道次粗晶区 lography of the transformation products of reverted austenite inin- 形成的链状M-A是造成焊缝及热影响区韧性恶化的 tercritically reheated coarse grained heat affected zone.Mater 关键因素.提高焊接热影响区韧性的总体思路为:(1) Des,2013.43:485 应用合金/微合金化及第二相粒子控制奥氏体晶粒长 [12]Li X D.Study on the Weldability of the Third Generation Pipeline 大和通过控制后续相变细化有效晶粒:(2)通过合理 Steels Dissertation].Beijing:University of Science and Tech- 设计道次热输入量和控制层间温度,改变链状M-A的 nology Beijing,2015 (李学达.第三代管线钢的焊接性能研究[学位论文].北 尺寸、形貌及形成位置,避免在粗晶区形成链状M-A; 京:北京科技大学,2015) (3)适当的焊后热处理以促进脆性M-A分解以及消 [13]Li X D.Shang C J,Han CC.et al.Influence of necklace-type 除焊接时所产生的内应力. M-A constituent on impact toughness and fracture mechanism in 对焊接而言,要提升焊接接头的性能需要母材、焊 the heat affected zone of X100 pipeline steel.Acta Metall Sin, 材和焊接工艺达到最佳匹配,这其中并没有一定之规. 2016,52(9):1025 (李学达,尚成嘉,韩昌柴,等.X100管线钢焊接热影响区 特别钢铁材料和焊接技术不断发展,给广大科技工作 中链状M-A组元对冲击韧性和断裂机制的影响.金属学 者提出了更多的课题和更大的挑战,今后的工程焊接 报,2016,52(9):1025) 问题将更加具体化、实用化,这就更加需要钢铁产品生 [14]Nakao Y,Oshige H,Noi S.Distribution of microstructure in 产商和工程施工单位的协同合作才能适应现代焊接工 HAZ of multi-pass welded high strength steel:study on distribu- 程的需求. tion of microstructure and toughness in multi-pass weld HAZ (Report 1).Q J Japan Weld Soe,1985,3(4):766 参考文献 (中尾嘉邦,大重戊明,野井伸悟.高張力鋼多層盛溶接熱影 [1]He X L,Shang C J,Yang S W,et al.High Performance Low 響部)组織分布:多層盛溶接热影霽部)组雏分布上钢性(仁 Carbon Bainitic Steel.Beijing:Metallurgical Industry Press,2008 阴寸3研究(第1報).溶接学会論文集,1985,3(4):766) (贺信莱,尚成嘉,杨善武,等.高性能低碳贝氏体钢.北京: [15]Lambert-Perlade A,Gourgues A F,Besson J,et al.Mechanisms 治金工业出版社,2008) and modeling of cleavage fracture in simulated heat-affected zone [2]Ohya K,Kim J,Yokoyama K,et al.Microstructures relevant to microstructures of a high-strength low alloy steel.Metall Mater brittle fracture initiation at the heat-affected zone of weldment of a Trans A,2004,35(13):1039 low carbon steel.Metall Mater Trans A,1996,27(9):2574 [16]Li Y,Baker T N.Effect of morphology of martensite-austenite [3]Liessem A,Erdelen-Peppler M.A critical view on the significance phase on fracture of weld heat affected zone in vanadium and nio- of HAZ toughness testing /International Pipeline Conference. bium microalloyed steels.Mater Sci Technol,2010,26(9): Calgary,2004 1029 [4]Moeinifar S,Kokabi A H,Hosseini H R M.Role of tandem sub- [17]Davis C L,King J E.Effect of cooling rate on intercritically re- merged arc welding thermal cycles on properties of the heat affect- heated microstructure and toughness in high strength low alloy ed zone in X80 microalloyed pipe line steel.Mater Process Tech- steel.Mater Sci Technol,1993,9(1):8 nod,2011,211(3):368 [18]Davis C L,King J E.Cleavage initiation in the intercritically re- [5]Wang X L,Wang X M,Shang C J,et al.Characterization of the heated coarse-grained heat-affected zone:Part I.Fractographic multi-pass weld metal and the impact of retained austenite obtained evidence.Metall Mater Trans A,1994,25(3):563 through intercritical heat treatment on low temperature toughness [19]Davis CL,King J E.Cleavage initiation in the intercritically re- Mater Sci Eng A,2016,649:282 heated coarse-grained heat-affected zone:Part Il.Failure criteria [6]Matsuda F,Fukada Y,Okada H,et al.Review of mechanical and statistical effects.Metall Mater Trans A,1996,27(10): and metallurgical investigations of martensite-austenite constituent 3019 in welded joints in Japan.Weld World,1996,37(3):134 [20]Mohseni P,Solberg JK,Karlsen M,et al.Cleavage fracture ini- [7]Zhang W Y.Welding Metallurgy.Beijing:Machinery Industry tiation at M-A constituents in intercritically coarse-grained heat- Press,2004 affected zone of a HSLA steel.Metall Mater Trans A,2014,45 (张文钺.焊接治金学.北京:机械工业出版社,2004) (1):384 [8]Guo A M,Li S R,Guo J,et al.Effect of zirconium addition on [21]Li X D,Ma X P,Subramanian S V,et al.Structure-property- the impact toughness of the heat affected zone in a high strength fracture mechanism correlation in heat affected zone of X100 fer- low alloy pipeline steel.Mater Charact,2008,59(2):134 rite-bainite pipeline steel.Metall Mater Trans E,2015,2(1):1 [9]Bhadeshia H K D H.Reliability of weld microstructure and prop- [22] Sakuma Y,Matsumura O,Takechi H.Mechanical properties erty calculations.Weld J,2004,83(9):237 and retained austenite in intercritically heat-treated bainite-trans- [10]Li DL,Li YZ.Welding Metallographic Analysis.Beijing:Ma- formed steel and their variation with Si and Mn additions.Metall工程科学学报,第 39 卷,第 5 期 已经得到了广泛的研究,对单道次焊接而言,避免焊接 冷裂纹和粗晶热影响区的组织控制是提高焊接热影响 区韧性的关键;对双/ 多道次焊接而言,由于后续道次 的热循环形成的链状 M鄄鄄A,特别是在前序道次粗晶区 形成的链状 M鄄鄄A 是造成焊缝及热影响区韧性恶化的 关键因素. 提高焊接热影响区韧性的总体思路为:(1) 应用合金/ 微合金化及第二相粒子控制奥氏体晶粒长 大和通过控制后续相变细化有效晶粒;(2) 通过合理 设计道次热输入量和控制层间温度,改变链状 M鄄鄄A 的 尺寸、形貌及形成位置,避免在粗晶区形成链状 M鄄鄄A; (3) 适当的焊后热处理以促进脆性 M鄄鄄 A 分解以及消 除焊接时所产生的内应力. 对焊接而言,要提升焊接接头的性能需要母材、焊 材和焊接工艺达到最佳匹配,这其中并没有一定之规. 特别钢铁材料和焊接技术不断发展,给广大科技工作 者提出了更多的课题和更大的挑战,今后的工程焊接 问题将更加具体化、实用化,这就更加需要钢铁产品生 产商和工程施工单位的协同合作才能适应现代焊接工 程的需求. 参 考 文 献 [1] He X L, Shang C J, Yang S W, et al. High Performance Low Carbon Bainitic Steel. Beijing: Metallurgical Industry Press, 2008 (贺信莱, 尚成嘉, 杨善武, 等. 高性能低碳贝氏体钢. 北京: 冶金工业出版社, 2008) [2] Ohya K, Kim J, Yokoyama K, et al. Microstructures relevant to brittle fracture initiation at the heat鄄affected zone of weldment of a low carbon steel. Metall Mater Trans A, 1996, 27(9): 2574 [3] Liessem A, Erdelen鄄Peppler M. A critical view on the significance of HAZ toughness testing / / International Pipeline Conference. Calgary, 2004 [4] Moeinifar S, Kokabi A H, Hosseini H R M. Role of tandem sub鄄 merged arc welding thermal cycles on properties of the heat affect鄄 ed zone in X80 microalloyed pipe line steel. J Mater Process Tech鄄 nol, 2011, 211(3): 368 [5] Wang X L, Wang X M, Shang C J, et al. Characterization of the multi鄄pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness. Mater Sci Eng A, 2016, 649: 282 [6] Matsuda F, Fukada Y, Okada H, et al. Review of mechanical and metallurgical investigations of martensite鄄austenite constituent in welded joints in Japan. Weld World, 1996, 37(3): 134 [7] Zhang W Y. Welding Metallurgy. Beijing: Machinery Industry Press, 2004 (张文钺. 焊接冶金学. 北京: 机械工业出版社, 2004) [8] Guo A M, Li S R, Guo J, et al. Effect of zirconium addition on the impact toughness of the heat affected zone in a high strength low alloy pipeline steel. Mater Charact, 2008, 59(2): 134 [9] Bhadeshia H K D H. Reliability of weld microstructure and prop鄄 erty calculations. Weld J, 2004, 83(9): 237 [10] L俟 D L, Li Y Z. Welding Metallographic Analysis. Beijing: Ma鄄 chinery Industry Press, 1987 (吕德林, 李砚珠. 焊接金相分析. 北京: 机械工业出版社, 1987) [11] You Y, Shang C J, Chen L, et al. Investigation on the crystal鄄 lography of the transformation products of reverted austenite in in鄄 tercritically reheated coarse grained heat affected zone. Mater Des, 2013, 43: 485 [12] Li X D. Study on the Weldability of the Third Generation Pipeline Steels [Dissertation]. Beijing: University of Science and Tech鄄 nology Beijing, 2015 (李学达. 第三代管线钢的焊接性能研究 [学位论文]. 北 京: 北京科技大学, 2015) [13] Li X D, Shang C J, Han C C, et al. Influence of necklace鄄type M鄄鄄A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel. Acta Metall Sin, 2016, 52(9): 1025 (李学达, 尚成嘉, 韩昌柴, 等. X100 管线钢焊接热影响区 中链状 M鄄鄄A 组元对冲击韧性和断裂机制的影响. 金属学 报, 2016, 52(9): 1025) [14] Nakao Y, Oshige H, Noi S. Distribution of microstructure in HAZ of multi鄄pass welded high strength steel: study on distribu鄄 tion of microstructure and toughness in multi鄄pass weld HAZ (Report 1). Q J Japan Weld Soc, 1985, 3(4): 766 (中尾嘉邦,大重広明,野井伸悟. 高張力鋼多層盛溶接熱影 響部瘴組織分布:多層盛溶接熱影響部瘴組織分布杖靱性账 関展针研究(第 1 報). 溶接学会論文集, 1985, 3(4): 766) [15] Lambert鄄Perlade A, Gourgues A F, Besson J, et al. Mechanisms and modeling of cleavage fracture in simulated heat鄄affected zone microstructures of a high鄄strength low alloy steel. Metall Mater Trans A, 2004, 35(13): 1039 [16] Li Y, Baker T N. Effect of morphology of martensite鄄austenite phase on fracture of weld heat affected zone in vanadium and nio鄄 bium microalloyed steels. Mater Sci Technol, 2010, 26 ( 9 ): 1029 [17] Davis C L, King J E. Effect of cooling rate on intercritically re鄄 heated microstructure and toughness in high strength low alloy steel. Mater Sci Technol, 1993, 9(1): 8 [18] Davis C L, King J E. Cleavage initiation in the intercritically re鄄 heated coarse鄄grained heat鄄affected zone: Part I. Fractographic evidence. Metall Mater Trans A, 1994, 25(3): 563 [19] Davis C L, King J E. Cleavage initiation in the intercritically re鄄 heated coarse鄄grained heat鄄affected zone: Part II. Failure criteria and statistical effects. Metall Mater Trans A, 1996, 27 ( 10 ): 3019 [20] Mohseni P, Solberg J K, Karlsen M, et al. Cleavage fracture ini鄄 tiation at M鄄鄄A constituents in intercritically coarse鄄grained heat鄄 affected zone of a HSLA steel. Metall Mater Trans A, 2014, 45 (1): 384 [21] Li X D, Ma X P, Subramanian S V, et al. Structure鄄property鄄 fracture mechanism correlation in heat affected zone of X100 fer鄄 rite鄄bainite pipeline steel. Metall Mater Trans E, 2015, 2(1): 1 [22] Sakuma Y, Matsumura O, Takechi H. Mechanical properties and retained austenite in intercritically heat鄄treated bainite鄄trans鄄 formed steel and their variation with Si and Mn additions. Metall ·652·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有