正在加载图片...
黄威等:杨梅状Fe,O,@SnO2核壳材料制备及吸波性能 …643· Z值接近1的区域更集中于低厚度区,说明相比 and microwave absorption property of the SnOz nanowire/paraffin 于FeO4@SnO2-l,FeO4@SnO2-2更容易在较薄的 composites.Nanoscale Res Lett,2009,4(12):1452 厚度下实现阻抗匹配.基于以上分析,杨梅状的 [8]Lian P C.Zhu X F,Liang S Z,et al.High reversible capacity of SnO /graphene nanocomposite as an anode material for lithium- FeO4@SnO2-2不仅具有较强的介电损耗能力,且 ion batteries.Electrochim Acta,2011,56(12):4532 有利于提升阻抗匹配性能,因此表现出更好的电 [9] Wang Y,Dai X Q,Jiang W C,et al.The hybrid of SnOz 磁波吸收能力 nanoparticle and polypyrrole aerogel:An excellent 3结论 electromagnetic wave absorbing materials.Mater Res Exp,2016, 3(7):075023 (1)以空心Fe3O4微球为模板,采用Stober法 [10]Zhao B,Guo X Q,Zhao W Y,et al.Yolk-shell Ni@SnOz 合成了Fe3O4@SiO2前驱物,并采用水热法进一步 composites with a designable interspace to improve the electromagnetic wave absorption properties.ACS Appl Mater 合成了杨梅状的Fe3O4@SnO2.X射线衍射和X射 nterfaces,2016,8(42):28917 线光电子能谱结果显示杨梅状的FeO4@SnO2晶 [11]Huang W.WeiSC.Liang Y,et al.Research progress of core-shell 型良好,合成纯度较高 composite absorbing materials.Chin J Eng,2019,41(5):547 (2)杨梅状的Fe3O4@SnO2呈球状,球径约为 (黄威,魏世丞,粱义,等.核壳结构复合吸波材料研究进展,工 500nm,且分散均匀无明显团聚.其SnO2层由纳 程科学学报,2019,41(5):547) 米SnO2颗粒松散堆叠而成,具有大量的空隙结构, [12]Liu J W,Che R C,Chen H J,et al.Microwave absorption enhancement of multifunctional composite microspheres with 层厚约为40nm. spinel Fe3Oa cores and anatase TiOz shells.Small,2012.8(8): (3)相比于FeO4@SnO2-l,Fe3O4@SnO2-2具 1214 有更好吸波性能,归因于介电损耗的增强和良好 [13]Li R Z,Ren X,Zhang F,et al.Synthesis of Fe:O@SnO,core- 阻抗匹配.杨梅状的Fe3O4@SnO2最优厚度为1.7mm, shell nanorod film and its application as a thin-film supercapacitor 此时Rmim为-29dB,有效带宽为4.9GHz(13.1~ electrode.Chem Commm,2012,48(41):5010 18GHz),是一种具有发展潜力的吸波材料 [14]Li J,Chen Y,Wu Q S,et al.Synthesis of sea-urchin-like Fe3O4/SnO2 heterostructures and its application for environmental 参考文献 remediation by removal of p-chlorophenol.J Mater Sci,2019, 54(2):1341 [1]Huang Y W,Wang Y J,Wei S C,et al.Effect of Co-doping on the [15]Feng J T,Hou Y H,Wang Y C,et al.Synthesis of hierarchical microstructure and microwave absorbing properties of RGO/Fe;Oa ZnFe2O@SiO,@RGO core-shell microspheres for enhanced composites.Chin J Eng,2018,40(7):849 electromagnetic wave absorption.ACS Appl Mater Interfaces, (黄玉炜,王玉江,魏世丞,等.Co掺杂对RGO/Fe:O4复合材料组 2017,9(16):14103 织结构和吸波性能的影响.工程科学学报,2018,40(7):849) [16]Yamashita T,Hayes P.Analysis of XPS spectra of Fe and Fe" [2]Zheng J,Yu Z X,Ji G B,et al.Reduction synthesis of ions in oxide materials.Appl Surf Sci,2008,254(8):2441 Fe,O,@SiO core-shell nanostructure with enhanced microwave- [17]Du H Y,Yao P J,Wang J,et al.Preparation and gas sensing absorption properties.J Alloys Compd,2014,602:8 property of SnO2/ZnO composite hetero-nanofibers using two-step [3]Zhou C.Geng S,Xu X W,et al.Lightweight hollow carbon method.J Inorg Mater,2018,33(4):453 nanospheres with tunable sizes towards enhancement in micro (杜海英,姚朋军,王兢,等.异质复合结构纳米纤维SnO/ZnO的 absorption.Carbon,2016,108:234 制备及其气敏特性研究.无机材料学报,2018,33(4):453) [4]Zhao B,Shao G,Fan BB,et al.Facile preparation and enhanced [18]Ashok A,Vijayaraghavan S N,Unni G E,et al.On the physics of microwave absorption properties of core-shell composite spheres dispersive electron transport characteristics in SnO,nanoparticle- composited of Ni cores and TiOz shells.Phys Chem Chem Phys, based dye sensitized solar cells.Nanotechnology,2018,29(17): 2015,17(14):8802 175401 [5]Liu Y,Cui TT,Wu T,et al.Excellent microwave-absorbing [19]Li Z W,Yang Z H.Microwave absorption properties and properties of elliptical Fe:O nanorings made by a rapid mechanism for hollow FeO nanosphere composites.J Magn microwave-assisted hydrothermal approach.Nanotechnology Magn Mater,.2015,387:131 2016.27(16):165707 [20]Lou X W,Yuan C,Archer L A.Double-walled SnO,nano [6]Hu C G,Mo Z Y,Lu G W,et al.3D graphene-Fe:O cocoons with movable magnetic cores.Ady Mater,2007,19(20): nanocomposites with high-performance microwave absorption. 3328 Phys Chem Chem Phys,2013,15(31):13038 [21]Du Y C,Liu WW,Qiang R,et al.Shell thickness-dependent [7]Feng H T,Zhuo R F,Chen J T,et al.Synthesis,characterization, microwave absorption of core-shell Fe:O@C composites.ACSZ 值接近 1 的区域更集中于低厚度区,说明相比 于 Fe3O4@SnO2 -1,Fe3O4@SnO2 -2 更容易在较薄的 厚度下实现阻抗匹配. 基于以上分析,杨梅状的 Fe3O4@SnO2 -2 不仅具有较强的介电损耗能力,且 有利于提升阻抗匹配性能,因此表现出更好的电 磁波吸收能力. 3    结论 (1)以空心 Fe3O4 微球为模板,采用 Stöber 法 合成了 Fe3O4@SiO2 前驱物,并采用水热法进一步 合成了杨梅状的 Fe3O4@SnO2 . X 射线衍射和 X 射 线光电子能谱结果显示杨梅状的 Fe3O4@SnO2 晶 型良好,合成纯度较高. (2)杨梅状的 Fe3O4@SnO2 呈球状,球径约为 500 nm,且分散均匀无明显团聚. 其 SnO2 层由纳 米 SnO2 颗粒松散堆叠而成,具有大量的空隙结构, 层厚约为 40 nm. ( 3) 相 比 于 Fe3O4@SnO2 -1, Fe3O4@SnO2 -2 具 有更好吸波性能,归因于介电损耗的增强和良好 阻抗匹配. 杨梅状的Fe3O4@SnO2 最优厚度为1.7 mm, 此时 RL(min) 为−29 dB,有效带宽为 4.9 GHz(13.1~ 18 GHz),是一种具有发展潜力的吸波材料. 参    考    文    献 Huang Y W, Wang Y J, Wei S C, et al. Effect of Co-doping on the microstructure and microwave absorbing properties of RGO/Fe3O4 composites. Chin J Eng, 2018, 40(7): 849 (黄玉炜, 王玉江, 魏世丞, 等. Co掺杂对RGO/Fe3O4复合材料组 织结构和吸波性能的影响. 工程科学学报, 2018, 40(7):849) [1] Zheng  J,  Yu  Z  X,  Ji  G  B,  et  al.  Reduction  synthesis  of FexOy@SiO2 core-shell  nanostructure  with  enhanced  microwave￾absorption properties. J Alloys Compd, 2014, 602: 8 [2] Zhou  C,  Geng  S,  Xu  X  W,  et  al.  Lightweight  hollow  carbon nanospheres  with  tunable  sizes  towards  enhancement  in  micro absorption. Carbon, 2016, 108: 234 [3] Zhao B, Shao G, Fan B B, et al. Facile preparation and enhanced microwave  absorption  properties  of  core-shell  composite  spheres composited of Ni cores and TiO2 shells. Phys Chem Chem Phys, 2015, 17(14): 8802 [4] Liu  Y,  Cui  T  T,  Wu  T,  et  al.  Excellent  microwave-absorbing properties  of  elliptical  Fe3O4 nanorings  made  by  a  rapid microwave-assisted  hydrothermal  approach. Nanotechnology, 2016, 27(16): 165707 [5] Hu  C  G,  Mo  Z  Y,  Lu  G  W,  et  al.  3D  graphene-Fe3O4 nanocomposites  with  high-performance  microwave  absorption. Phys Chem Chem Phys, 2013, 15(31): 13038 [6] [7] Feng H T, Zhuo R F, Chen J T, et al. Synthesis, characterization, and microwave absorption property of the SnO2 nanowire/paraffin composites. Nanoscale Res Lett, 2009, 4(12): 1452 Lian P C, Zhu X F, Liang S Z, et al. High reversible capacity of SnO2 /graphene  nanocomposite  as  an  anode  material  for  lithium￾ion batteries. Electrochim Acta, 2011, 56(12): 4532 [8] Wang  Y,  Dai  X  Q,  Jiang  W  C,  et  al.  The  hybrid  of  SnO2 nanoparticle  and  polypyrrole  aerogel:  An  excellent electromagnetic  wave  absorbing  materials. Mater Res Exp,  2016, 3(7): 075023 [9] Zhao  B,  Guo  X  Q,  Zhao  W  Y,  et  al.  Yolk-shell  Ni@SnO2 composites  with  a  designable  interspace  to  improve  the electromagnetic  wave  absorption  properties. ACS Appl Mater Interfaces, 2016, 8(42): 28917 [10] Huang W, Wei S C, Liang Y, et al. Research progress of core-shell composite absorbing materials. Chin J Eng, 2019, 41(5): 547 (黄威, 魏世丞, 梁义, 等. 核壳结构复合吸波材料研究进展. 工 程科学学报, 2019, 41(5):547) [11] Liu  J  W,  Che  R  C,  Chen  H  J,  et  al.  Microwave  absorption enhancement  of  multifunctional  composite  microspheres  with spinel  Fe3O4 cores  and  anatase  TiO2 shells. Small,  2012,  8(8): 1214 [12] Li  R  Z,  Ren  X,  Zhang  F,  et  al.  Synthesis  of  Fe3O4@SnO2 core￾shell nanorod film and its application as a thin-film supercapacitor electrode. Chem Commun, 2012, 48(41): 5010 [13] Li  J,  Chen  Y,  Wu  Q  S,  et  al.  Synthesis  of  sea-urchin-like Fe3O4 /SnO2 heterostructures and its application for environmental remediation  by  removal  of  p-chlorophenol. J Mater Sci,  2019, 54(2): 1341 [14] Feng  J  T,  Hou  Y  H,  Wang  Y  C,  et  al.  Synthesis  of  hierarchical ZnFe2O4@SiO2@RGO  core-shell  microspheres  for  enhanced electromagnetic  wave  absorption. ACS Appl Mater Interfaces, 2017, 9(16): 14103 [15] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci, 2008, 254(8): 2441 [16] Du  H  Y,  Yao  P  J,  Wang  J,  et  al.  Preparation  and  gas  sensing property of SnO2 /ZnO composite hetero-nanofibers using two-step method. J Inorg Mater, 2018, 33(4): 453 (杜海英, 姚朋军, 王兢, 等. 异质复合结构纳米纤维SnO2 /ZnO的 制备及其气敏特性研究. 无机材料学报, 2018, 33(4):453) [17] Ashok A, Vijayaraghavan S N, Unni G E, et al. On the physics of dispersive  electron  transport  characteristics  in  SnO2 nanoparticle￾based  dye  sensitized  solar  cells. Nanotechnology,  2018,  29(17): 175401 [18] Li  Z  W,  Yang  Z  H.  Microwave  absorption  properties  and mechanism  for  hollow  Fe3O4 nanosphere  composites. J Magn Magn Mater, 2015, 387: 131 [19] Lou  X  W,  Yuan  C,  Archer  L  A.  Double-walled  SnO2 nano￾cocoons with movable magnetic cores. Adv Mater, 2007, 19(20): 3328 [20] Du  Y  C,  Liu  W  W,  Qiang  R,  et  al.  Shell  thickness-dependent microwave  absorption  of  core-shell  Fe3O4@C  composites. ACS [21] 黄    威等: 杨梅状 Fe3O4@SnO2 核壳材料制备及吸波性能 · 643 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有