正在加载图片...
1参考文献 2[1]C.Delmas.Sodium and sodium-ion batteries:50 years of research.Advanced Energy Materials,2018,8: 31703137 4[2]B.Lee,E.Paek,D.Mitlin,et al.Sodium metal anodes:emerging solutions to dendrite growth.Chemical 5 Review3,2019.119:5416 6[3]B.Dunn,H.Kamath,J.M.Tarascon,et al.Electrical energy storage for the grid:a battery of choices. 7 Science,201l,334:928 8[4]T.Liu,Y.Zhang,Z.Jiang,et al.Exploring competitive features of stationary sodium ion batteries for 9 electrochemical energy storage.Energy Environmental Science,2019,12:1512 10[5]T.Zhou,J.Shen,Z.Wang,et al.Regulating lithium nucleation and deposition via-MOF-derived Co@C- 11 modified carbon cloth for stable Li metal anode.Advanced Functional Materials,2020.30.1909159 12[6]Ponrouch,D.Monti,A.Boschin,et al.Non-aqueous electrolytes for sodium-ion batteries s.Journal of 13 Materials Chemistry A,2015,3:22 14[7]T.M.Gur.Review of electrical energy storage technologies,materials and systems:challenges and prospects 15 for large-scale grid storage.Energy Emvironmental Science,2018,1:2696 16[8]T.Liu,Y.Zhang,C.Chen,et al.Sustainability-inspired cell design for a fully recyclable sodium ion battery. 17 Nature Communications,2019,10:1965 18[9]C.Xia,R.Black,R.Fernandes,et al.The critical role of phase-transfer catalysis in aprotic sodium oxygen 19 batteries.Nature Chemistry,2015,7:496 20[10]S.Wei,S.Choudhury,J.Xu,et al.Highly stable sodium b atteries enabled by functional ionic polymer 21 membranes.Advanced Materials,2017,29:1605512 22[11]Q.Ma,Z.Chen,S.Zhong,et al.Na-substituntion induced oxygen vacancy achieving high transition metal 23 capacity in commercial Li-rich cathode.Nano Energy,2020:105622 24[12]L.Schafzahl,N.Mahne,B.Schafzah,et al.Singlet oxygen during cycling of the aprotic sodium-O2 battery, 25 Angewandte Chemie International Edition,2017,56:15728 26[13]C.Xia,R.Black,R.Fernandeset The critical role of phase-transfer catalysis in aprotic sodium oxygen 27 batteries.Nature Communications,2015,7:496 2814]W.Liu,Q.Sun,Ya An enhanced electrochemical performance of a sodium-air battery with 29 graphene nanosheets as air electrode catalysts,Chemical Communications,2013,49:1951 30[15]P.Hartmann,C.D Bender,M.Vracar,et al.A rechargeable room-temperature sodium superoxide (Na-O2) 31 battery.Nahure Materials,2013,12:228 32[16]B.Lee,E.Paek.D.Mitlin,et al.Sodium metal anodes:emerging solutions to dendrite growth.Chemical 33 Reviews,.20i9/119:5416 34[17]H.Wang EMatios,J.Luo et al.Combining theories and experiments to understand the sodium nucleation 35 behavior towards safe sodium metal batteries.Chemical Sociery Reviews,2020,49:3783 36[18]Y.Zhang,C.Wang,G.Pastel,et al.3D wettable framework for dendrite-free alkali metal anodes.Advanced 37 Energy Materials,2018,8:1800635 38[19]T.Li,J.Sun,S.Gao,et al.Superior sodium metal anodes enabled by sodiophilic carbonized coconut 39 framework with 3d tubular structure.Advanced Energy Materials,2021,11:2003699 40[20]C.Ma,T.Xu and Y.Wang,Advanced carbon nanostructures for future high performance sodium metal 41 anodes.Energy Storage Materials,2020,25:811 42[21]L.Zeng,T.Zhou,X.Xu,et al.General construction of lithiophilic 3D skeleton for dendrite-free lithium参 考 文 献 [1] C. Delmas. Sodium and sodium-ion batteries: 50 years of research. Advanced Energy Materials, 2018, 8: 1703137 [2] B. Lee, E. Paek, D. Mitlin, et al. Sodium metal anodes: emerging solutions to dendrite growth. Chemical Reviews, 2019, 119: 5416 [3] B. Dunn, H. Kamath, J. M. Tarascon, et al. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334: 928 [4] T. Liu, Y. Zhang, Z. Jiang, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy & Environmental Science, 2019, 12: 1512 [5] T. Zhou, J. Shen, Z. Wang, et al. Regulating lithium nucleation and deposition via MOF-derived Co@C￾modified carbon cloth for stable Li metal anode. Advanced Functional Materials, 2020, 30: 1909159 [6] Ponrouch, D. Monti, A. Boschin, et al. Non-aqueous electrolytes for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3: 22 [7] T. M. Gur. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science, 2018, 11: 2696 [8] T. Liu, Y. Zhang, C. Chen, et al. Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nature Communications, 2019, 10: 1965 [9] C. Xia, R. Black, R. Fernandes, et al. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nature Chemistry, 2015, 7: 496 [10] S. Wei, S. Choudhury, J. Xu, et al. Highly stable sodium batteries enabled by functional ionic polymer membranes. Advanced Materials, 2017, 29: 1605512、 [11] Q. Ma, Z. Chen, S. Zhong, et al. Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. Nano Energy, 2020: 105622 [12] L. Schafzahl, N. Mahne, B. Schafzah, et al. Singlet oxygen during cycling of the aprotic sodium-O2 battery, Angewandte Chemie International Edition, 2017, 56: 15728 [13] C. Xia, R. Black, R. Fernandes, et al. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nature Communications, 2015, 7: 496 [14] W. Liu, Q. Sun, Y. Yang, et al. An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts, Chemical Communications, 2013, 49: 1951 [15] P. Hartmann, C.L. Bender, M. Vracar, et al. A rechargeable room-temperature sodium superoxide (Na-O2) battery. Nature Materials, 2013, 12: 228 [16] B. Lee, E. Paek, D. Mitlin, et al. Sodium metal anodes: emerging solutions to dendrite growth. Chemical Reviews, 2019, 119: 5416 [17] H. Wang, E. Matios, J. Luo et al. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chemical Society Reviews, 2020, 49: 3783 [18] Y. Zhang, C. Wang, G. Pastel, et al. 3D wettable framework for dendrite-free alkali metal anodes. Advanced Energy Materials, 2018, 8: 1800635 [19] T. Li, J. Sun, S. Gao, et al. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3d tubular structure. Advanced Energy Materials, 2021, 11: 2003699 [20] C. Ma, T. Xu and Y. Wang, Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Materials, 2020, 25: 811 [21] L. Zeng, T. Zhou, X. Xu, et al. General construction of lithiophilic 3D skeleton for dendrite-free lithium 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 录用稿件,非最终出版稿
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有