第1期 李素,等:群智能算法优化支持向量机参数综述 ·81· log circuit fault diagnosis based on particle swarm optimiz- selection[J].Computer engineering and applications,2013, ation SVM[J].Application research of computers,2012, 4923):86-90. 2911:4053-4055. [49]田海雷,李洪儒,许葆华.基于改进人工鱼群算法的支持 [40]郭凤仪,郭长娜,王爱军,等.基于粒子群优化支持向量 向量机预测J】.计算机工程,2013,394少:222-225. 机的煤矿水位预测模型).计算机工程与科学,2012, TIAN Hailei,LI Hongru,XU Baohua.Support vector ma- 34(7):177-181. chine prediction based on improved artificial fish swarm GUO Fengyi,GUO Changna,WANG Aijun,et al.The algorithm[J].Computer engineering,2013,39(4):222-225. forecast model of mine water discharge based on particle [50]朱文静,白静.一种混沌人工鱼群算法对SVM参数的优 swarm optimization and support vector machinesJ].Com- 化及应用.微电子学与计算机,2016,33(3):89-93. puter engineering and science,2012,34(7):177-181. ZHU Wenjing,BAI Jing.A Chaos artificial fish swarm al- [41]GURAKSIN G E,HAKLI H,UGUZ H.Support vector gorithm for parameters optimization and application of machines classification based on particle swarm optimiza- support vector machine[J].Microelectronics and computer, tion for bone age determination[J].Applied soft computing. 2016,33(3):89-93 2014.24:597-602 [5]冯晓琳,宁芊,雷印杰,等.基于改进型人工鱼群算法的 [42]HARISH N,MANDAL S,RAO S,et al.Particle Swarm 支持向量机参数优化[J].计算机测量与控制,2016 Optimization based support vector machine for damage 24(5)237-241. level prediction of non-reshaped berm breakwater[J].Ap- FENG Xiaolin,NING Qian,LEI Yinjie,et al.Support vec- plied soft computing,2015,27:313-321. tor machine parameter optimization based on improved ar- [43]ZHANG Xuedong,TIAN Li,WANG Yong.Application of tificial fish swarm algorithm[J].Computer measurement support vector machine model based on particle swarm op- and control,,2016,245):237-241. timization for the evaluation of products'kansei image[J]. [52]BAI Jing,YANG Lihong,ZHANG Xueying.Parameter Open cybernetics and systemics journal,2014,8:85-92. optimization and application of support vector machine [44李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模 based on parallel artificial fish swarm algorithm[J].Journ- 式:鱼群算法[J].系统工程理论与实践,2002,22(11): al of software,2013,8(3):673-679 32-38. [53]LIN Kuancheng,CHEN S Y,HUNG J C.Feature selec- LI Xiaolei,SHAO Zhijiang,QIAN Jixin.An optimizing tion and parameter optimization of support vector ma- method based on autonomous animats:fish-swarm al- chines based on modified artificial fish swarm algorithms gorithm[J].Systems engineering-theory and practice,2002, [J].Mathematical problems in engineering,2015,2015: 22(11:32-38. 604108. [4)李晓磊,钱积新.基于分解协调的人工鱼群优化算法研 [54]LIN Kuancheng,CHEN S Y,HUNG J C.Botnet detection 究[).电路与系统学报,2003,8(1):1-6. using support vector machines with artificial fish swarm al- LI Xiaolei.QIAN Jixin.Studies on artificial fish swarm op- gorithm[J].Journal of applied mathematics,2014,2014: timization algorithm based on decomposition and coordina- 986428. tion techniques[J].Journal of circuits and systems,2003, [55]KARABOGA D.An idea based on honey bee swarm for 8(1):16. numerical optimization[R].Kayseri:Computer Engineer- [46]GE Hongwei,SUN Liang,CHEN Xin,et al.An Efficient ing Department,2005. artificial fish swarm model with estimation of distribution [56]NG KK H,LEE C K M.Makespan minimization in air- for flexible job shop scheduling[J].International journal of craft landing problem under congested traffic situation us- computational intelligence systems,2016,9(5):917-931. ing modified artificial bee colony algorithm[Cl//Proceed- [47]ZHANG Shuying,ZHAO Xiaohui,LIANG Cong,et al. ings of 2016 IEEE International Conference on Industrial Adaptive power allocation schemes based on IAFS al- Engineering and Engineering Management.Bali,Indone- gorithm for OFDM-based cognitive radio systems[J].Inter- sia,2016:750-754. national journal of electronics,2017,104(1):1-15 [5刀刘敏,邹杰,冯星,等。人工蜂群算法的无人机航路规划 [48]高雷阜,赵世杰,高晶.人工鱼群算法在SVM参数优化 与平滑J.智能系统学报,2011,6(4):344-349 选择中的应用[J].计算机工程与应用,2013,49(23): LIU Min,ZOU Jie,FENG Xing,et al.Smooth trajectory 86-90. planning of an unmanned aerial vehicle using an artificial GAO Leifu,ZHAO Shijie,GAO Jing.Application of artifi- bee colony algorithm[J].CAAl transactions on intelligent cial fish-swarm algorithm in SVM parameter optimization systems,.2011,6(4):344-349log circuit fault diagnosis based on particle swarm optimization SVM[J]. Application research of computers, 2012, 29(11): 4053–4055. 郭凤仪, 郭长娜, 王爱军, 等. 基于粒子群优化支持向量 机的煤矿水位预测模型[J]. 计算机工程与科学, 2012, 34(7): 177–181. GUO Fengyi, GUO Changna, WANG Aijun, et al. The forecast model of mine water discharge based on particle swarm optimization and support vector machines[J]. Computer engineering and science, 2012, 34(7): 177–181. [40] GÜRAKSIN G E, HAKLI H, UĞUZ H. Support vector machines classification based on particle swarm optimization for bone age determination[J]. Applied soft computing, 2014, 24: 597–602. [41] HARISH N, MANDAL S, RAO S, et al. Particle Swarm Optimization based support vector machine for damage level prediction of non-reshaped berm breakwater[J]. Applied soft computing, 2015, 27: 313–321. [42] ZHANG Xuedong, TIAN Li, WANG Yong. Application of support vector machine model based on particle swarm optimization for the evaluation of products’ kansei image[J]. Open cybernetics and systemics journal, 2014, 8: 85–92. [43] 李晓磊, 邵之江, 钱积新. 一种基于动物自治体的寻优模 式: 鱼群算法[J]. 系统工程理论与实践, 2002, 22(11): 32–38. LI Xiaolei, SHAO Zhijiang, QIAN Jixin. An optimizing method based on autonomous animats: fish-swarm algorithm[J]. Systems engineering-theory and practice, 2002, 22(11): 32–38. [44] 李晓磊, 钱积新. 基于分解协调的人工鱼群优化算法研 究[J]. 电路与系统学报, 2003, 8(1): 1–6. LI Xiaolei, QIAN Jixin. Studies on artificial fish swarm optimization algorithm based on decomposition and coordination techniques[J]. Journal of circuits and systems, 2003, 8(1): 1–6. [45] GE Hongwei, SUN Liang, CHEN Xin, et al. An Efficient artificial fish swarm model with estimation of distribution for flexible job shop scheduling[J]. International journal of computational intelligence systems, 2016, 9(5): 917–931. [46] ZHANG Shuying, ZHAO Xiaohui, LIANG Cong, et al. Adaptive power allocation schemes based on IAFS algorithm for OFDM-based cognitive radio systems[J]. International journal of electronics, 2017, 104(1): 1–15. [47] 高雷阜, 赵世杰, 高晶. 人工鱼群算法在 SVM 参数优化 选择中的应用[J]. 计算机工程与应用, 2013, 49(23): 86–90. GAO Leifu, ZHAO Shijie, GAO Jing. Application of artificial fish-swarm algorithm in SVM parameter optimization [48] selection[J]. Computer engineering and applications, 2013, 49(23): 86–90. 田海雷, 李洪儒, 许葆华. 基于改进人工鱼群算法的支持 向量机预测[J]. 计算机工程, 2013, 39(4): 222–225. TIAN Hailei, LI Hongru, XU Baohua. Support vector machine prediction based on improved artificial fish swarm algorithm[J]. Computer engineering, 2013, 39(4): 222–225. [49] 朱文静, 白静. 一种混沌人工鱼群算法对 SVM 参数的优 化及应用[J]. 微电子学与计算机, 2016, 33(3): 89–93. ZHU Wenjing, BAI Jing. A Chaos artificial fish swarm algorithm for parameters optimization and application of support vector machine[J]. Microelectronics and computer, 2016, 33(3): 89–93. [50] 冯晓琳, 宁芊, 雷印杰, 等. 基于改进型人工鱼群算法的 支持向量机参数优化[J]. 计算机测量与控制, 2016, 24(5): 237–241. FENG Xiaolin, NING Qian, LEI Yinjie, et al. Support vector machine parameter optimization based on improved artificial fish swarm algorithm[J]. Computer measurement and control, 2016, 24(5): 237–241. [51] BAI Jing, YANG Lihong, ZHANG Xueying. Parameter optimization and application of support vector machine based on parallel artificial fish swarm algorithm[J]. Journal of software, 2013, 8(3): 673–679. [52] LIN Kuancheng, CHEN S Y, HUNG J C. Feature selection and parameter optimization of support vector machines based on modified artificial fish swarm algorithms [J]. Mathematical problems in engineering, 2015, 2015: 604108. [53] LIN Kuancheng, CHEN S Y, HUNG J C. Botnet detection using support vector machines with artificial fish swarm algorithm[J]. Journal of applied mathematics, 2014, 2014: 986428. [54] KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Computer Engineering Department, 2005. [55] NG K K H, LEE C K M. Makespan minimization in aircraft landing problem under congested traffic situation using modified artificial bee colony algorithm[C]//Proceedings of 2016 IEEE International Conference on Industrial Engineering and Engineering Management. Bali, Indonesia, 2016: 750–754. [56] 刘敏, 邹杰, 冯星, 等. 人工蜂群算法的无人机航路规划 与平滑[J]. 智能系统学报, 2011, 6(4): 344–349. LIU Min, ZOU Jie, FENG Xing, et al. Smooth trajectory planning of an unmanned aerial vehicle using an artificial bee colony algorithm[J]. CAAI transactions on intelligent systems, 2011, 6(4): 344–349. [57] 第 1 期 李素,等:群智能算法优化支持向量机参数综述 ·81·