·80· 智能系统学报 第13卷 PEI Zhenbing,CHEN Xuebo.Improved ant colony al- [31]KENNEDY J,EBERHART R.Particle swarm optimiza- gorithm and its application in obstacle avoidance for robot tion[Cl//Proceedings of IEEE International Conference on [J].CAAI transactions on intelligent systems,2015,10(1): Neural Networks.Perth,WA,Australia,1995:1942-1948. 90-96. [32]EBERHART R,KENNEDY J.A new optimizer using [22]JABBARPOUR M R,ZARRABI H,JUNG JJ,et al.A particle swarm theory[C]//Proceedings of the 6th Interna- green ant-based method for path planning of unmanned tional Symposium on Micro Machine and Human Science. ground vehicles[J].IEEE access,2017,5:1820-1832. Nagoya,Japan,1995:39-43. [23]WANG Lei,CAl Jingcao,LI Ming,et al.Flexible job shop [33]ZHANG Yang,LIU Yuncai.Traffic forecasting using least scheduling problem using an improved ant colony optimiz- squares support vector machines[J].Transportmetrica, ation[J].Scientific programming,2017,2017:9016303. 2009,5(3:193-213 24]汪镭,吴启迪.蚁群算法在连续空间寻优问题求解中的 [34]沈继红,王侃.求解旅行商问题的混合粒子群优化算法 应用).控制与决策,2003,18(1):45-48,57, [).智能系统学报,2012,7(2):174-182 WANG Lei,WU Qidi.Ant system algorithm in continu- SHEN Jihong,WANG Kan.The light ray particle swarm ous space optimization[J].Control and decision,2003. optimization for solving the traveling salesman problem[J] 18(1):45-48,57. CAAI transactions on intelligent systems,2012,7(2): [2]肖国荣.改进蚁群算法和支持向量机的网络入侵检测) 174-182. 计算机工程与应用,2014,50(3):75-78 [35]WANG Xibin,LUO Fengji,SANG Chunyan,et al.Person- XIAO Guorong.Network intrusion detection by combina- alized movie recommendation system based on support tion of improved ACO and SVM[J].Computer engineer- vector machine and improved particle swarm optimization ing and applications,2014,50(3):75-78. [J].IEICE transactions on information and systems,2017, [26高雷阜,张秀丽,王飞.改进蚁群算法在SVM参数优化 E100-D2):285-293. 研究中的应用).计算机工程与应用,2015,51(13少:139 [36)单黎黎,张宏军,王杰,等.一种改进粒子群算法的混合 144 核&-SVM参数优化及应用[】.计算机应用研究,2013, GAO Leifu,ZHANG Xiuli,WANG Fei.Application of 30(6):1636-1639. improved ant colony algorithm in SVM parameter optimiz- SHAN Lili,ZHANG Hongjun,WANG Jie,et al.Paramet- ation selection[J].Computer engineering and applications, ers optimization and implementation of mixed kernels e- 2015,51(13139-144 SVM based on improved PSO algorithm[J].Application re- [27]ZHANG Xiaoli,CHEN Wei,WANG Baojian,et al.Intelli- search of computers,2013,30(6):1636-1639 gent fault diagnosis of rotating machinery using support [37刀毛耀宗,陈珂,江弋,等.基于粒子群算法与图形处理器 vector machine with ant colony algorithm for synchronous 加速的支持向量机参数优化方法[).厦门大学学报:自 feature selection and parameter optimization[J].Neuro- 然科学版,2013,52(5):609-612 computing.2015,167:260-279. MAO Yaozong,CHEN Ke,JIANG Yi,et al.Parameter op- [28]HAN Pu,GAO Fang,ZHAI Yongjie,et al.Coal ASH fu- timization of SVM based on particle swarm optimization sion temperature model based on SVM optimized by algorithm and GPU acceleration[J].Journal of Xiamen uni- ACO[C]//Proceedings of Symposium on ICT and Energy versity:natural science,2013,52(5):609-612 Efficiency and Workshop on Information Theory and Se- [38]王喜宾,张小平,王翰虎.基于粒子群优化模式搜索的支 curity.Dublin,Ireland,2012:101-105. 持向量机参数优化及应用计算机应用,2011,31(123302 [29]AALIZADEH R,VON DER OHE P C,THOMAIDIS N S. 3304.3326. Prediction of acute toxicity of emerging contaminants on WANG Xibin,ZHANG Xiaoping,WANG Hanhu.Para- the water flea daphnia magna by ant colony optimization- meter optimization of support vector machine and applica- support vector machine QSTR models[J].Environmental tion based on particle swarm optimization mode search[J]. science:processes and impacts,2017,19(3):438-448. Journal of computer applications,2011,31(12):3302- [30]ALWAN H B,KU-MAHAMUD K R.Mixed-variable ant 3304.3326. colony optimisation algorithm for feature subset selection 「39]胡云艳,彭敏放,田成来,等.基于粒子群算法优化支持 and tuning support vector machine parameter[J].Interna- 向量机的模拟电路诊断J1.计算机应用研究,2012, tional journal of bio-inspired computation,2017,9(1): 29(11):4053-4055. 53-63. HU Yunyan,PENG Minfang,TIAN Chenglai,et al.Ana-PEI Zhenbing, CHEN Xuebo. Improved ant colony algorithm and its application in obstacle avoidance for robot [J]. CAAI transactions on intelligent systems, 2015, 10(1): 90–96. JABBARPOUR M R, ZARRABI H, JUNG J J, et al. A green ant-based method for path planning of unmanned ground vehicles[J]. IEEE access, 2017, 5: 1820–1832. [22] WANG Lei, CAI Jingcao, LI Ming, et al. Flexible job shop scheduling problem using an improved ant colony optimization[J]. Scientific programming, 2017, 2017: 9016303. [23] 汪镭, 吴启迪. 蚁群算法在连续空间寻优问题求解中的 应用[J]. 控制与决策, 2003, 18(1): 45–48, 57. WANG Lei, WU Qidi. Ant system algorithm in continuous space optimization[J]. Control and decision, 2003, 18(1): 45–48, 57. [24] 肖国荣. 改进蚁群算法和支持向量机的网络入侵检测[J]. 计算机工程与应用, 2014, 50(3): 75–78. XIAO Guorong. Network intrusion detection by combination of improved ACO and SVM[J]. Computer engineering and applications, 2014, 50(3): 75–78. [25] 高雷阜, 张秀丽, 王飞. 改进蚁群算法在 SVM 参数优化 研究中的应用[J]. 计算机工程与应用, 2015, 51(13): 139– 144. GAO Leifu, ZHANG Xiuli, WANG Fei. Application of improved ant colony algorithm in SVM parameter optimization selection[J]. Computer engineering and applications, 2015, 51(13): 139–144. [26] ZHANG Xiaoli, CHEN Wei, WANG Baojian, et al. Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization[J]. Neurocomputing, 2015, 167: 260–279. [27] HAN Pu, GAO Fang, ZHAI Yongjie, et al. Coal ASH fusion temperature model based on SVM optimized by ACO[C]//Proceedings of Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security. Dublin, Ireland, 2012: 101–105. [28] AALIZADEH R, VON DER OHE P C, THOMAIDIS N S. Prediction of acute toxicity of emerging contaminants on the water flea daphnia magna by ant colony optimizationsupport vector machine QSTR models[J]. Environmental science: processes and impacts, 2017, 19(3): 438–448. [29] ALWAN H B, KU-MAHAMUD K R. Mixed-variable ant colony optimisation algorithm for feature subset selection and tuning support vector machine parameter[J]. International journal of bio-inspired computation, 2017, 9(1): 53–63. [30] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Perth, WA, Australia, 1995: 1942–1948. [31] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]∥Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995: 39–43. [32] ZHANG Yang, LIU Yuncai. Traffic forecasting using least squares support vector machines[J]. Transportmetrica, 2009, 5(3): 193–213. [33] 沈继红, 王侃. 求解旅行商问题的混合粒子群优化算法 [J]. 智能系统学报, 2012, 7(2): 174–182. SHEN Jihong, WANG Kan. The light ray particle swarm optimization for solving the traveling salesman problem[J]. CAAI transactions on intelligent systems, 2012, 7(2): 174–182. [34] WANG Xibin, LUO Fengji, SANG Chunyan, et al. Personalized movie recommendation system based on support vector machine and improved particle swarm optimization [J]. IEICE transactions on information and systems, 2017, E100-D(2): 285–293. [35] 单黎黎, 张宏军, 王杰, 等. 一种改进粒子群算法的混合 核 ε-SVM 参数优化及应用[J]. 计算机应用研究, 2013, 30(6): 1636–1639. SHAN Lili, ZHANG Hongjun, WANG Jie, et al. Parameters optimization and implementation of mixed kernels ε- SVM based on improved PSO algorithm[J]. Application research of computers, 2013, 30(6): 1636–1639. [36] 毛耀宗, 陈珂, 江弋, 等. 基于粒子群算法与图形处理器 加速的支持向量机参数优化方法[J]. 厦门大学学报: 自 然科学版, 2013, 52(5): 609–612. MAO Yaozong, CHEN Ke, JIANG Yi, et al. Parameter optimization of SVM based on particle swarm optimization algorithm and GPU acceleration[J]. Journal of Xiamen university: natural science, 2013, 52(5): 609–612. [37] 王喜宾, 张小平, 王翰虎. 基于粒子群优化模式搜索的支 持向量机参数优化及应用[J]. 计算机应用, 2011, 31(12): 3302– 3304, 3326. WANG Xibin, ZHANG Xiaoping, WANG Hanhu. Parameter optimization of support vector machine and application based on particle swarm optimization mode search[J]. Journal of computer applications, 2011, 31(12): 3302– 3304, 3326. [38] 胡云艳, 彭敏放, 田成来, 等. 基于粒子群算法优化支持 向量机的模拟电路诊断[J]. 计算机应用研究, 2012, 29(11): 4053–4055. HU Yunyan, PENG Minfang, TIAN Chenglai, et al. Ana- [39] ·80· 智 能 系 统 学 报 第 13 卷