微细加工技术 2006年 Study on Process of Microinjection Metal Mold Based on UV-LIGA Technology DU Li-qun, QIN Jiang, LIU Hai-jun, LIU Chong, YU Tong-min (1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China: 2. Key Laboratory for Micro//Nano Technology and System of Liaoning Province, Dalian, China) Abstract: A novel microfabrication technology of microinjection metal mold is presented, which it is called no-back plate-growth method. By the method, the nickel micro-electroforming pattern was directly made on a metal substrate by a low-cost UV-LIGA surface micro-fabrication process using the negative thick SU-8 photoresist to form the mi- croinjection mold. The adhesion property of the photoresist with the substrate and some effective methods of remo- ng the photoresist were discussed. The method takes a short time for micro-electroforming and produces high quali ty of mold, and it is also adapted to fabricate other micro-mechanical components. So, it is a kind of processing technique with a development prospect in the MEMS field. Key words: micro electroforming: UV-LIGA process; SU-8 photoresist; microinjection mold (上接第50页) 2003,5050:101-108 臂梁打下良好基础,而且能为RIE刻蚀硅工艺在其[4] Ledermann Nicolas, Muralt Paul, Babrowski Jacek,etll 它方面的应用提供较好的参考。 (100)-Textured, piezoelectric Pb( Zr,, Ti,-)0, thin films for MEMS: integration, deposition and properties 参考文献: [J]. Sensors and Actuators A, 2003, 105(2): 162-170. [1] Paul muralt. pzt thin films for microsensors and actuators:[5]谢晓强,戴旭涵,赵小林,等.反应离子刻蚀中的边缘效 where do we stand? [J]. IEEE Transactions on Ultrason 应及其补偿方法[.真空电子技术,2005,2:41 is, Ferroelectrics and Frequency Control,200,4):903-[6]方华斌,刘景全,徐峥谊,等.PZ厚膜拾振器微图形 化工艺研究[J].微细加工技术,2005,(4):4851 [2] Lee chengkuo, Itoh toshihiro, Suga Tadatomo Micromachined[7]张锦,冯伯儒,杜春雷,等.反应离子刻蚀工艺因素研 Piezoelectric force sensor based on PZT thin film[J].IEEE 究[J].光电工程,1997,24:46-51 Transactions on Ultrasonics, Ferroelectrics and Frequency [8 Otto T, Wolf H, Streiter R, et al. Process and equipment Control,19%6,(4):553-559 simulation of dry Si etching in the absence of ion bombard- [3] Sodano H A, Park G, Inman DJ. Use of Piezoelectric En- ment[J]. Microelectronic Engineering, 1999, 45:377 ergy Harvesting Devices for Charging Batteries[ J].SPIE Study on Reactive lon Etching of Silicon in Fabrication Process of Piezoelectric Microcantilever DONG Lu, FANG Hua-bin', LIU Jing-quan, XU Dong, XU Zheng-yi, CAI Bing-chu' (1. Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, National Key Laboratory of Micro/ Nano Fabrication, Institute of Micro/Nanometer Science and Technology, Shanghai Jiaotong University, Shanghai 200030, China: 2. Shanghai Sensors Lab, Honeywell American, Shanghai 200030, China) Abstract: The process of a Si-based piezoelectric microcantilever was introduced. Especially, the technique of the reactive ion etching of silicon was studied emphatically. During etching of silicon, it was analyzed that the etching rate, uniformity and selectivity can be effectively improved by adjusting technological parameters properly, such gas flow, RF power, working pressure, etc. The results indicate that the etching rate of Si can reach 401 nm/min and uniformity on a 3 wafer is controlled at + 3. 85% when the flow of SFs is 20 mL/ min, RF power is 20 W nd the work pressure is 8. 00 Pa. The research lay a well foundation for the fabrication of piezoelectric microcantile- vers or other microstructures with functional thin film Key words数超 ectric microcantilever;rH: etching rate: uniformity: selectivity微 细 加 工 技 术 !""# 年 !"#$% &’ ()&*+,, &- ./*)&/’0+*"/&’ .+"12 .&2$ 31,+$ &’ 456789: ;+*<’&2&=% $% &’()*+, ,-./ 0’1+2! ,&.% 31’(4*+! ,&.% 567+2! ,8% 97+2(:’+, (,; <=> &1?7@1A7@> B7@ C@=D’E’7+ 1+F /7+ G A@1F’A’7+1H I1D6’+’+2 9=D6+7H72> 7B I’+’EA@> 7B JF*D1A’7+,$1H’1+ %+’K=@E’A> 7B 9=D6+7H72>,$1H’1+ ,,#"!L,56’+1;!; <=> &1?7@1A7@> B7@ I’D@7 M /1+7 9=D6+7H72> 1+F N>EA=: 7B &’17+’+2 C@7K’+D=,$1H’1+,56’+1) :>,")1*":O +7K=H :’D@7B1?@’D1A’7+ A=D6+7H72> 7B :’D@7’+4=DA’7+ :=A1H :7HF ’E P@=E=+A=F,Q6’D6 ’A ’E D1HH=F +7(?1DR( PH1A=(2@7QA6 :=A67F; S> A6= :=A67F,A6= +’DR=H :’D@7(=H=DA@7B7@:’+2 P1AA=@+ Q1E F’@=DAH> :1F= 7+ 1 :=A1H E*?EA@1A= ?> 1 H7Q(D7EA %T(&.UO E*@B1D= :’D@7(B1?@’D1A’7+ P@7D=EE *E’+2 A6= +=21A’K= A6’DR N%(V P67A7@=E’EA A7 B7@: A6= :’( D@7’+4=DA’7+ :7HF; 96= 1F6=E’7+ P@7P=@A> 7B A6= P67A7@=E’EA Q’A6 A6= E*?EA@1A= 1+F E7:= =BB=DA’K= :=A67FE 7B @=:7( K’+2 A6= P67A7@=E’EA Q=@= F’ED*EE=F; 96= :=A67F A1R=E 1 E67@A A’:= B7@ :’D@7(=H=DA@7B7@:’+2 1+F P@7F*D=E 6’26 )*1H’( A> 7B :7HF,1+F ’A ’E 1HE7 1F1PA=F A7 B1?@’D1A= 7A6=@ :’D@7(:=D61+’D1H D7:P7+=+AE; N7,’A ’E 1 R’+F 7B P@7D=EE’+2 A=D6+’)*= Q’A6 1 F=K=H7P:=+A P@7EP=DA ’+ A6= IJIN B’=HF; ?+% @&)$,::’D@7 =H=DA@7B7@:’+2;%T(&.UO P@7D=EE;N%(V P67A7@=E’EA; &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& :’D@7’+4=DA’7+ :7HF (上接第 W" 页) 臂梁打下良好基础,而且能为 X.J 刻蚀硅工艺在其 它方面的应用提供较好的参考。 参考文献: [,] C1*H I*@1HA; CZ9 A6’+ B’H:E B7@ :’D@7E=+E7@E 1+F 1DA*1A7@E: Q6=@= F7 Q= EA1+F?[0]; .JJJ 9@1+E1DA’7+E 7+ %HA@1E7+( ’DE,[=@@7=H=DA@’DE 1+F [@=)*=+D> 57+A@7H,!"""(,L):\"] G \,W; [!]&== 56=+2R*7,.A76 97E6’6’@7,N*21 91F1A7:7; I’D@7:1D6’+=F C’=^7=H=DA@’D B7@D= E=+E7@ ?1E=F 7+ CZ9 A6’+ B’H:[0]; .JJJ 9@1+E1DA’7+E 7+ %HA@1E7+’DE,[=@@7=H=DA@’DE 1+F [@=)*=+D> 57+A@7H,,\\#(,L):WW] GWW\; []] N7F1+7 3 O,C1@R U,.+:1+ $ 0; %E= 7B C’=^7=H=DA@’D J+( =@2> 31@K=EA’+2 $=K’D=E B7@ 561@2’+2 S1AA=@’=[E 0]_ NC.J, !""],W"W":,", G ,"V; [L] &=F=@:1++ /’D7H1E,I*@1HA C1*H,S1?@7QER’ 01D=R,=A 1H; {, " "}G 9=‘A*@=F,P’=^7=H=DA@’D C?(Z@!,9’, G !)a] A6’+ B’H:E B7@ IJIN:’+A=2@1A’7+,F=P7E’A’7+ 1+F P@7P=@A’=E [0]_ N=+E7@E 1+F ODA*1A7@E O,!""],,"W(!):,#! G ,b"; [W] 谢晓强,戴旭涵,赵小林,等; 反应离子刻蚀中的边缘效 应及其补偿方法[0]; 真空电子技术,!""W,!:L, G LL; [#] 方华斌,刘景全,徐峥谊,等 ; CZ9 厚膜拾振器微图形 化工艺研究[0]; 微细加工技术,!""W,(L):LV G W,; [b] 张锦,冯伯儒,杜春雷,等 ; 反应离子刻蚀工艺因素研 究[0]; 光电工程,,\\b,!L:L# G W,; [V] aAA7 9,c7HB 3,NA@=’A=@ X,=A 1H; C@7D=EE 1+F =)*’P:=+A E’:*H1A’7+ 7B F@> N’ =AD6’+2 ’+ A6= 1?E=+D= 7B ’7+ ?7:?1@F( :=+[A 0]_ I’D@7=H=DA@7+’D J+2’+==@’+2,,\\\,LW:]bb G ]\,; !"#$% &’ A+1*"/B+ 8&’ C"*</’= &- !/2/*&’ /’ D1>)/*1"/&’ ()&*+,, &- (/+E&+2+*")/* ./*)&*1’"/2+B+) $a/U &*, ,[O/U 3*1(?’+, ,&.% 0’+2()*1+, ,d% $7+2 , ,d% Z6=+2(>’ ! ,5O. S’+2(D6*, (,; <=> &1?7@1A7@> B7@ 96’+ [’H: 1+F I’D@7 [1?@’D1A’7+ 7B I’+’EA@> 7B JF*D1A’7+,/1A’7+1H <=> &1?7@1A7@> 7B I’D@7 M /1+7 [1?@’D1A’7+,.+EA’A*A= 7B I’D@7 M /1+7:=A=@ ND’=+D= 1+F 9=D6+7H72>,N61+261’ 0’17A7+2 %+’K=@E’A>,N61+261’ !"""]",56’+1;!; N61+261’ N=+E7@E &1?,37+=>Q=HH O:=@’D1+,N61+261’ !"""]",56’+1) :>,")1*":96= P@7D=EE 7B 1 N’(?1E=F P’=^7=H=DA@’D :’D@7D1+A’H=K=@ Q1E ’+A@7F*D=F; JEP=D’1HH>,A6= A=D6+’)*= 7B A6= @=1DA’K= ’7+ =AD6’+2 7B E’H’D7+ Q1E EA*F’=F =:P61A’D1HH>; $*@’+2 =AD6’+2 7B E’H’D7+,’A Q1E 1+1H>^=F A61A A6= =AD6’+2 @1A=,*+’B7@:’A> 1+F E=H=DA’K’A> D1+ ?= =BB=DA’K=H> ’:P@7K=F ?> 1F4*EA’+2 A=D6+7H72’D1H P1@1:=A=@E P@7P=@H>,E*D6 1E 21E BH7Q,X[ P7Q=@,Q7@R’+2 P@=EE*@=,=AD; 96= @=E*HAE ’+F’D1A= A61A A6= =AD6’+2 @1A= 7B N’ D1+ @=1D6 L", +: M :’+ 1+F A6= +7+(*+’B7@:’A> 7+ 1 ]e Q1B=@ ’E D7+A@7HH=F 1A f ]; VWg Q6=+ A6= BH7Q 7B N[# ’E !" :& M :’+,X[ P7Q=@ ’E !" c 1+F A6= Q7@R P@=EE*@= ’E V; "" C1; 96= @=E=1@D6 H1> 1 Q=HH B7*+F1A’7+ B7@ A6= B1?@’D1A’7+ 7B P’=^7=H=DA@’D :’D@7D1+A’H=( K=@E 7@ 7A6=@ :’D@7EA@*DA*@=E Q’A6 B*+DA’7+1H A6’+ B’H:; ?+% @&)$,:P’=^7=H=DA@’D :’D@7D1+A’H=K=@;X.J;=AD6’+2 @1A=;*+’B7@:’A>;E=H=DA’K’A> WL 万方数据