正在加载图片...
工程科学学报,第40卷,第10期:1177-1186,2018年10月 Chinese Journal of Engineering,Vol.40,No.10:1177-1186,October 2018 DOI:10.13374/j.issn2095-9389.2018.10.004;http://journals.ustb.edu.cn 钢渣作为钾盐矿充填料胶结剂的固化机理 王 雪),王全2),张滨2),倪文)四,金荣振),赵柯) 1)北京科技大学工业典型污染物资源化处理北京市重点实验室,北京100083 2)中农国际钾盐开发有限公司,北京100052 ☒通信作者,E-mail:niwen@ces.ustb.edu.cn 摘要以有效解决钾盐矿尾盐和尾液导致的环境污染、资源浪费、安全隐患等问题为出发点,以改善钾盐矿充填料流动度 和强度为目的,利用钢渣水化反应缓慢持久的特点,制备了以钢渣为胶结剂的钾盐矿充填料,初步证明钢渣细度和养护温度 对充填料的性能有较大影响.所制备的充填料8h内流动度保持在200mm以上,28d抗压强度可达2MPa,满足充填料的性能 要求.本文着重从微观角度分析了其固化机理,X射线衍射技术,扫描电子显微镜、热重分析、红外分析等分析结果表明:钢渣 粉与钾盐矿尾液水化反应的产物主要为C-S-H凝胶、水铝钙石(或称费里德尔盐)、类水滑石等,在水化反应过程中水化产物 之间相互穿插包裹使体系结构的致密度和强度不断增长.在微观结构呈层状的水铝钙石和类水滑石中出现类质同象代替现 象,Ca2·、Mg2·、Fe2·,Fe3·、A3+和Si·都可相互取代而使得OH~和C1“参与其中,这对体系中的杂质离子起到固定作用,对 充填料的稳定性有利.该研究结果初步表明钢渣具有充当钾盐矿充填料胶结剂的潜力. 关键词钢渣粉:钾盐矿尾液;C-S-H凝胶;费里德尔盐;水铝钙石;胶结充填;类质同象 分类号TD853.34 Hydration mechanism of using steel slag as binder for backfill materials in potash mines WANG Xue'',WANG Quan2),ZHANG Bin》,VI Wen',JIN Rong-zhen”,ZHA0Ke2》 1)Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants,University of Science and Technology Beijing,Beijing 100083,China 2)Sino-agri.Potash Co.Ltd.,Beijing 100052,China Corresponding author,E-mail;niwen@ces.ustb.edu.cn ABSTRACT The depth and scale of potash mines is currently increasing.Backfill materials with higher homogeneity and greater flu- idity property are required to prevent blocking and ensure that filling materials are transported safely to the underground mines.The production of low-cost backfill materials that meet both strength and transportability requirements is therefore extremely important.A potash filling material with steel slag as a cementing agent was prepared to solve the problems caused by potash tailings and brine water in potash mines,such as environmental pollution,resources waste,and potential safety issues.This was also done with the aim of im- proving the flow and strength properties of potash filling materials by using steel slag as binder because its hydration reaction is slow and durable.The results indicated that the fluidity and late strength met requirements.It was also initially proved that the steel slag fine- ness and curing temperature had a significant influence on the performance of the filling material.The fluidity of the filler was greater than 200 mm in 8 h and the compressive strength reached 2 MPa in 28 days,which satisfied the performance requirements for the filler. This article mainly focuses on the analysis of the curing mechanism from a microscopic point of view.The results of X-ray diffraction (XRD),scanning electron microscopy with energy dispersive spectrometer (SEM-EDS),thermogravimetry/differential thermal analy- sis (TG/DTA),and Fourier-transform infrared spectroscopy (FTIR)show that the products of the hydration reactions are primarily C- S-H gels,hydrocalumite (or Friedel's salt),and brucite.They are interspersed with each other so that the density and strength im- 收稿日期:2018-04-01 基金项目:国家自然科学基金资助项目(41472043)工程科学学报,第 40 卷,第 10 期:1177鄄鄄1186,2018 年 10 月 Chinese Journal of Engineering, Vol. 40, No. 10: 1177鄄鄄1186, October 2018 DOI: 10. 13374 / j. issn2095鄄鄄9389. 2018. 10. 004; http: / / journals. ustb. edu. cn 钢渣作为钾盐矿充填料胶结剂的固化机理 王 雪1) , 王 全2) , 张 滨2) , 倪 文1) 苣 , 金荣振1) , 赵 柯2) 1)北京科技大学工业典型污染物资源化处理北京市重点实验室, 北京 100083 2)中农国际钾盐开发有限公司, 北京 100052 苣 通信作者, E鄄mail: niwen@ ces. ustb. edu. cn 摘 要 以有效解决钾盐矿尾盐和尾液导致的环境污染、资源浪费、安全隐患等问题为出发点,以改善钾盐矿充填料流动度 和强度为目的,利用钢渣水化反应缓慢持久的特点,制备了以钢渣为胶结剂的钾盐矿充填料,初步证明钢渣细度和养护温度 对充填料的性能有较大影响. 所制备的充填料 8 h 内流动度保持在 200 mm 以上,28 d 抗压强度可达 2 MPa,满足充填料的性能 要求. 本文着重从微观角度分析了其固化机理,X 射线衍射技术、扫描电子显微镜、热重分析、红外分析等分析结果表明:钢渣 粉与钾盐矿尾液水化反应的产物主要为 C鄄鄄 S鄄鄄H 凝胶、水铝钙石(或称费里德尔盐)、类水滑石等,在水化反应过程中水化产物 之间相互穿插包裹使体系结构的致密度和强度不断增长. 在微观结构呈层状的水铝钙石和类水滑石中出现类质同象代替现 象,Ca 2 + 、Mg 2 + 、Fe 2 + ,Fe 3 + 、Al 3 + 和 Si 4 + 都可相互取代而使得 OH - 和 Cl - 参与其中,这对体系中的杂质离子起到固定作用,对 充填料的稳定性有利. 该研究结果初步表明钢渣具有充当钾盐矿充填料胶结剂的潜力. 关键词 钢渣粉; 钾盐矿尾液; C鄄鄄 S鄄鄄H 凝胶; 费里德尔盐; 水铝钙石; 胶结充填; 类质同象 分类号 TD853郾 34 收稿日期: 2018鄄鄄04鄄鄄01 基金项目: 国家自然科学基金资助项目(41472043) Hydration mechanism of using steel slag as binder for backfill materials in potash mines WANG Xue 1) , WANG Quan 2) , ZHANG Bin 2) , NI Wen 1) 苣 , JIN Rong鄄zhen 1) , ZHAO Ke 2) 1) Beijing Key Laboratory on Resource鄄oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China 2) Sino鄄agri. Potash Co. Ltd. , Beijing 100052, China 苣 Corresponding author, E鄄mail: niwen@ ces. ustb. edu. cn ABSTRACT The depth and scale of potash mines is currently increasing. Backfill materials with higher homogeneity and greater flu鄄 idity property are required to prevent blocking and ensure that filling materials are transported safely to the underground mines. The production of low鄄cost backfill materials that meet both strength and transportability requirements is therefore extremely important. A potash filling material with steel slag as a cementing agent was prepared to solve the problems caused by potash tailings and brine water in potash mines, such as environmental pollution, resources waste, and potential safety issues. This was also done with the aim of im鄄 proving the flow and strength properties of potash filling materials by using steel slag as binder because its hydration reaction is slow and durable. The results indicated that the fluidity and late strength met requirements. It was also initially proved that the steel slag fine鄄 ness and curing temperature had a significant influence on the performance of the filling material. The fluidity of the filler was greater than 200 mm in 8 h and the compressive strength reached 2 MPa in 28 days, which satisfied the performance requirements for the filler. This article mainly focuses on the analysis of the curing mechanism from a microscopic point of view. The results of X鄄ray diffraction (XRD), scanning electron microscopy with energy dispersive spectrometer (SEM鄄鄄EDS), thermogravimetry / differential thermal analy鄄 sis (TG/ DTA), and Fourier鄄transform infrared spectroscopy (FTIR) show that the products of the hydration reactions are primarily C鄄鄄 S鄄鄄H gels, hydrocalumite (or Friedel蒺s salt), and brucite. They are interspersed with each other so that the density and strength im鄄
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有