正在加载图片...
·1080 工程科学学报,第43卷,第8期 的铂颗粒平均粒径从2.44nm增加到了4.19nm, transmission electron microscopy imaging of site-selective Pt 未看到Ionomer对碳腐蚀的保护作用. nanocatalysts:Electrochemical activation and surface disordering. JAm Chem Soc,2015,137(47):14992 参考文献 [13]Sakthivel M,Drillet J F.An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen [1]Cherevko S.Kulyk N.Mayrhofer K JJ.Durability of platinum- reduction reaction.Appl Catal B:Emviron,2018,231:62 based fuel cell electrocatalysts:Dissolution of bulk and nanoscale [14]Schonvogel D,Hulstede J,Wagner P,et al.Stability of Pt platinum.Nano Energy,2016,29:275 nanoparticles on alterative carbon supports for oxygen reduction [2]Sun S.Liu Z D.Diao P.Preparation and catalytic studies of reaction.J Electrochem Soc,2017,164(9):F995 pyrrole-doped carbon black oxide cathode materials for oxygen [15]Gasteiger H A,Kocha SS,Sompalli B,et al.Activity benchmarks reduction reactions.Chin J Eng,2019,41(2):216 and requirements for Pt,Pt-alloy,and non-Pt oxygen reduction (孙珊,刘桎东,刁鹏.吡咯/炭黑氧化物复合氧阴极材料的制备 catalysts for PEMFCs.Appl Catal B:Environ,2005,56(1-2):9 及催化性能.工程科学学报,2019,41(2):216) [16]Inaba M,Jensen A W,Sievers G W,et al.Benchmarking high [3]Souza N E,Bott-Neto JL,Rocha T A,et al.Support modification surface area electrocatalysts in a gas diffusion electrode: in Pt/C electrocatalysts for durability increase:A degradation study Measurement of oxygen reduction activities under realistic assisted by identical location transmission electron microscopy. conditions.Energy Environ Sci,2018,11(4):988 Electrochimica Acta,2018,265:523 [17]Nonoyama N,Okazaki S,Weber A Z,et al.Analysis of oxygen- [4]Bandarenka A S,Ventosa E,Maljusch A,et al.Techniques and transport diffusion resistance in proton-exchange-membrane fuel methodologies in modern electrocatalysis:Evaluation of activity, cells.J Electrochem Soc,2011,158(4):B416 selectivity and stability of catalytic materials.Analyst,2014, [18]Kongkanand A,Mathias M F.The priority and challenge of high- 139(6):1274 power performance of low-platinum proton-exchange membrane [5]Huang K,Zhu M T,Zhang F P,et al.Preparation of CoP/ fuel cells.J Phys Chem Lett,2016,7(7):1127 Co@NPC@rGO nanocomposites with an efficient bifunctiona [19]Kocha S S,Zack J W,Alia S M,et al.Influence of ink electrocatalyst for hydrogen evolution and oxygen evolution composition on the electrochemical properties of Pu/C reaction.Chin J Eng,2020,42(1):91 electrocatalysts.ECS Trans,2013,50(2):1475 (黄康,朱梅婷,张飞鹏,等.一种高效双功能电催化剂CoP/ [20]Ohma A,Fushinobu K,Okazaki K.Influence of Nafion film on Co@NPC@rG0的制备.工程科学学报,2020,42(1):91) oxygen reduction reaction and hydrogen peroxide formation on Pt [6] Arenz M,Zana A.Fuel cell catalyst degradation:Identical location electrode for proton exchange membrane fuel cell.Electrochmica electron microscopy and related methods.Nano Energy,2016,29 Acta,2010,55(28):8829 299 [21]Mayrhofer K JJ,Ashton S J,Meier J C,et al.Non-destructive [7]Meier J C,Galeano C,Katsounaros I,et al.Degradation transmission electron microscopy study of catalyst degradation mechanisms of Pu/C fuel cell catalysts under simulated start-stop under electrochemical treatment.J Power Sources.2008.185(2): conditions.ACS Catal,2012,2(5):832 734 [8]Hartl K.Hanzlik M.Arenz M.IL-TEM investigations on the [22]Schlogl K,Hanzlik M,Arenz M.Comparative IL-TEM study degradation mechanism of Pt/C electrocatalysts with different concerning the degradation of carbon supported Pt-based carbon supports.Energy Emviron Sci,2011.4(1):234 electrocatalysts.J Electrochem Soc,2012,159(6):B677 [9]Zana A,Speder J,Roefzaad M,et al.Probing degradation by IL- [23]Yu Y C,Xin H L,Hovden R,et al.Three-dimensional tracking TEM:The influence of stress test conditions on the degradation and visualization of hundreds of Pt-Co fuel cell nanocatalysts mechanism.J Electrochem Soc.2013.160(6):F608 during electrochemical aging.Nano Lett,2012,12(9):4417 [10]Speder J,Zana A,Spanos I,et al.Comparative degradation study [24]Nikkuni F R,Dubau L,Ticianelli E A,et al.Accelerated of carbon supported proton exchange membrane fuel cell degradation of PtCo/C and Pu/C electrocatalysts studied by electrocatalysts-The influence of the platinum to carbon ratio on identical-location transmission electron microscopy in polymer the degradation rate.J Power Sources,2014,261:14 electrolyte environment.Appl Catal B:Environ,2015,176-177: [11]Hengge K,Gansler T,Pizzutilo E,et al.Accelerated fuel cell tests 486 of anodic Pt/Ru catalyst via identical location TEM:New aspects [25]Vion-Dury B,Chatenet M,Guetaz L,et al.Determination of aging of degradation behavior.Int J Hydrog Energy,2017,42(40): markers and their use as a tool to characterize Pt/C nanoparticles 25359 degradation mechanism in model PEMFC cathode environment. [12]Aran-Ais R M,Yu Y C,Hovden R,et al.Identical location ECS Trans,,2019,41(1):697的铂颗粒平均粒径从 2.44 nm 增加到了 4.19 nm, 未看到 Ionomer 对碳腐蚀的保护作用. 参    考    文    献 Cherevko  S,  Kulyk  N,  Mayrhofer  K  J  J.  Durability  of  platinum￾based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum. Nano Energy, 2016, 29: 275 [1] Sun  S,  Liu  Z  D,  Diao  P.  Preparation  and  catalytic  studies  of pyrrole-doped  carbon  black  oxide  cathode  materials  for  oxygen reduction reactions. Chin J Eng, 2019, 41(2): 216 (孙珊, 刘桎东, 刁鹏. 吡咯/炭黑氧化物复合氧阴极材料的制备 及催化性能. 工程科学学报, 2019, 41(2):216) [2] Souza N E, Bott-Neto J L, Rocha T A, et al. Support modification in Pt/C electrocatalysts for durability increase: A degradation study assisted  by  identical  location  transmission  electron  microscopy. Electrochimica Acta, 2018, 265: 523 [3] Bandarenka  A  S,  Ventosa  E,  Maljusch  A,  et  al.  Techniques  and methodologies  in  modern  electrocatalysis:  Evaluation  of  activity, selectivity  and  stability  of  catalytic  materials. Analyst,  2014, 139(6): 1274 [4] Huang  K,  Zhu  M  T,  Zhang  F  P,  et  al.  Preparation  of  CoP/ Co@NPC@rGO  nanocomposites  with  an  efficient  bifunctiona electrocatalyst  for  hydrogen  evolution  and  oxygen  evolution reaction. Chin J Eng, 2020, 42(1): 91 (黄康, 朱梅婷, 张飞鹏, 等. 一种高效双功能电催化剂CoP/ Co@NPC@rGO的制备. 工程科学学报, 2020, 42(1):91) [5] Arenz M, Zana A. Fuel cell catalyst degradation: Identical location electron microscopy and related methods. Nano Energy, 2016, 29: 299 [6] Meier  J  C,  Galeano  C,  Katsounaros  I,  et  al.  Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catal, 2012, 2(5): 832 [7] Hartl  K,  Hanzlik  M,  Arenz  M.  IL-TEM  investigations  on  the degradation  mechanism  of  Pt/C  electrocatalysts  with  different carbon supports. Energy Environ Sci, 2011, 4(1): 234 [8] Zana A, Speder J, Roefzaad M, et al. Probing degradation by IL￾TEM:  The  influence  of  stress  test  conditions  on  the  degradation mechanism. J Electrochem Soc, 2013, 160(6): F608 [9] Speder J, Zana A, Spanos I, et al. Comparative degradation study of  carbon  supported  proton  exchange  membrane  fuel  cell electrocatalysts - The influence of the platinum to carbon ratio on the degradation rate. J Power Sources, 2014, 261: 14 [10] Hengge K, Gänsler T, Pizzutilo E, et al. Accelerated fuel cell tests of anodic Pt/Ru catalyst via identical location TEM: New aspects of  degradation  behavior. Int J Hydrog Energy,  2017,  42(40): 25359 [11] [12] Arán-Ais  R  M,  Yu  Y  C,  Hovden  R,  et  al.  Identical  location transmission  electron  microscopy  imaging  of  site-selective  Pt nanocatalysts: Electrochemical activation and surface disordering. J Am Chem Soc, 2015, 137(47): 14992 Sakthivel M, Drillet J F. An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Appl Catal B: Environ, 2018, 231: 62 [13] Schonvogel  D,  Hülstede  J,  Wagner  P,  et  al.  Stability  of  Pt nanoparticles on alternative carbon supports for oxygen reduction reaction. J Electrochem Soc, 2017, 164(9): F995 [14] Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and  requirements  for  Pt,  Pt-alloy,  and  non-Pt  oxygen  reduction catalysts for PEMFCs. Appl Catal B: Environ, 2005, 56(1-2): 9 [15] Inaba  M,  Jensen  A  W,  Sievers  G  W,  et  al.  Benchmarking  high surface  area  electrocatalysts  in  a  gas  diffusion  electrode: Measurement  of  oxygen  reduction  activities  under  realistic conditions. Energy Environ Sci, 2018, 11(4): 988 [16] Nonoyama N, Okazaki S, Weber A Z, et al. Analysis of oxygen￾transport  diffusion  resistance  in  proton-exchange-membrane  fuel cells. J Electrochem Soc, 2011, 158(4): B416 [17] Kongkanand A, Mathias M F. The priority and challenge of high￾power  performance  of  low-platinum  proton-exchange  membrane fuel cells. J Phys Chem Lett, 2016, 7(7): 1127 [18] Kocha  S  S,  Zack  J  W,  Alia  S  M,  et  al.  Influence  of  ink composition  on  the  electrochemical  properties  of  Pt/C electrocatalysts. ECS Trans, 2013, 50(2): 1475 [19] Ohma A, Fushinobu K, Okazaki K. Influence of Nafion® film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell. Electrochimica Acta, 2010, 55(28): 8829 [20] Mayrhofer  K  J  J,  Ashton  S  J,  Meier  J  C,  et  al.  Non-destructive transmission  electron  microscopy  study  of  catalyst  degradation under electrochemical treatment. J Power Sources, 2008, 185(2): 734 [21] Schlögl  K,  Hanzlik  M,  Arenz  M.  Comparative  IL-TEM  study concerning  the  degradation  of  carbon  supported  Pt-based electrocatalysts. J Electrochem Soc, 2012, 159(6): B677 [22] Yu  Y  C,  Xin  H  L,  Hovden  R,  et  al.  Three-dimensional  tracking and  visualization  of  hundreds  of  Pt−Co  fuel  cell  nanocatalysts during electrochemical aging. Nano Lett, 2012, 12(9): 4417 [23] Nikkuni  F  R,  Dubau  L,  Ticianelli  E  A,  et  al.  Accelerated degradation  of  Pt3Co/C  and  Pt/C  electrocatalysts  studied  by identical-location  transmission  electron  microscopy  in  polymer electrolyte  environment. Appl Catal B: Environ,  2015,  176-177: 486 [24] Vion-Dury B, Chatenet M, Guétaz L, et al. Determination of aging markers and their use as a tool to characterize Pt/C nanoparticles degradation  mechanism  in  model  PEMFC  cathode  environment. ECS Trans, 2019, 41(1): 697 [25] · 1080 · 工程科学学报,第 43 卷,第 8 期
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有