正在加载图片...
第十六讲分离变量法 第3页 对于给定的n和m,再进一步求出 Tm()=Anme-hnmM,其他情形, 也可以写成统一的形式 Tm()=A1nme-mnx,n=0,1,2,3,…,m=0,1,2,3 m7\ 2 Anm =un+v, 因此,就求得整个定解问题的特解 (,y, t) a COS 和一般解 u(a, y, t) y, t) n=0m=0 not 6ye-anmnl n=0m=0 代入初始条件,有 31=0=∑∑An (x,y) n=0m=0 下一步就应当根据本征函数的正交性定出叠加系数.现在既要用到{Xn(x),n=0,1,2,…}的正交 性,又要用到{Yn(y),m=0,1,2,…}的正交性,缺一不可.其次,考虑到它们的正交归一性 Xn(Xn(adr =o(1+8no8nn' m(y)Ym()dy==(1+5mo 计算中还需要留心区分n=0与n≠0和m=0与m≠0的情形.计算的结果是 Amm=ab (+om(+omo/o(, y cos at- cos"bmydrdyWu Chong-shi ➛➜➝➞ ➟➠❴❵➡ (➢) ❢ 3 ❣ ➤↔➥✲✰ n ❈ m ✛ ✿ ✯❁❂➦➧ T00(t) = A00, n = m = 0, Tnm(t) = Anm e −λnmκt , ✪➨➩➫, ✼✽➈ ➓➔➒ ❁✰➫➭ Tnm(t) = Anm e −λnmκt, n = 0, 1, 2, 3, · · · , m = 0, 1, 2, 3, · · · , λnm = µn + νm = nπ a 2 + mπ b 2 . ➯➲✛➑➦✩➳● ✲❦↕➙✰➵❦ unm(x, y, t) = Xn(x)Ym(y)Tnm(t) = Anm cos nπ a x cos mπ b y e −λnmκt ❈❁➸❦ u(x, y, t) = X∞ n=0 X∞ m=0 unm(x, y, t) = X∞ n=0 X∞ m=0 Anm cos nπ a x cos mπ b y e −λnmκt = X∞ n=0 X∞ m=0 Anm cos nπ a x cos mπ b y exp  − nπ a 2 + mπ b 2  κt . ✜✢➺➻✺✻✛❊ u(x, y, t) t=0 = X∞ n=0 X∞ m=0 Anm cos nπ a x cos mπ b y = φ(x, y). ➼ ❁❂➑➽❤➾➚rs✉✴✰➪➶➹✲➧➘➴➷✴✵➬➮➱✃❐❘ {Xn(x), n = 0, 1, 2, · · ·} ✰➪➶ ➹✛◗✃❐❘ {Ym(y), m = 0, 1, 2, · · ·} ✰➪➶➹✛❒❁❮✽✵✪ ♠✛❰Ï❘ ❏❑✰➪➶Ð❁➹ Z a 0 Xn(x)Xn0 (x) dx = a 2 (1 + δn0) δnn0 , Z b 0 Ym(y)Ym0 (y) dy = b 2 (1 + δm0) δmm0 . ÑÒ ✫ÓÔ✃ ÕÖ×✥ n = 0 Ø n 6= 0 ❈ m = 0 Ø m 6= 0 ✰ ➩➫✵ ÑÒ✰➋➌✬ Anm = 4 ab 1 (1 + δn0) (1 + δm0) Z a 0 Z b 0 φ(x, y) cos nπ a x cos mπ b y dxdy
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有