M2=-2[ 1 a a 162 (sin sin0 00 a0 sin20002 1 d((sin@, 1 a(2=-B Angular part (0)sin0 a0 a0 Φ()sin0ap2 e(0)t()=-10sn0200+ ⊙(0) a2 sin0 00 in20062 Φ()] ae 1 ={-方2[ 82 (8)sin0a8 (sin Φ()sin20a02 Φ(p)]}Θ(0)Φ(p) 7 2=1(0+1)h2 M2Ψ=22Ψ 2=√10+1)h M=I(I+1)h (1=0,12,3…) Denote the orbital angular momentum. When there exist an angular momentum,there is also a magnetic moment. 2me 4= 2m。 √10+)h=V11+)B。 eh .= =9.274×10-24J.T- Bohr magneton 2m。] sin 1 (sin ) sin 1 [ 2 2 2 2 2 θ θ φ θ θ θ ∂ ∂ + ∂ ∂ ∂ ∂ = − ∧ M h β φ φ θ φ θ θ θ θ θ θ = − ∂ ∂ Φ Φ + ∂ ∂Θ ∂ ∂ Θ 2 2 2 ( ) ( )sin 1 ) ( ) (sin ( )sin 1 f Angular part ( )] sin ( ) (sin ( )) sin ( ) ( ) ( ) [ 2 2 2 2 2 φ θ φ θ θ θ θ θ θ φ θ φ Φ ∂ Θ ∂ Θ + ∂ ∂ ∂ Φ ∂ Θ Φ = − ∧ M h ( )]} ( ) ( ) ( )sin 1 (sin ( )) ( )sin 1 { [ 2 2 2 2 φ θ φ φ θ φ θ θ θ θ θ θ Φ Θ Φ ∂ ∂ Φ Θ + ∂ ∂ ∂ ∂ Θ = −h Ψ = Ψ ∧ 2 2 M λ h h ( 1) ( 1) 2 2 = + = + l l l l λ λ M = l(l +1)h (l = 0,1,2,3⋅⋅⋅) • Denote the orbital angular momentum. When there exist an angular momentum, there is also a magnetic moment. J T Bohr magneton m e l l l l m e M m e e e e e e 24 1 9.274 10 2 ( 1) ( 1) 2 2 − − = = × ⋅ = + = + = − h h β μ β μ