正在加载图片...
·1172 工程科学学报,第37卷,第9期 到稳态的过程中,阳离子空位在钝化膜/溶液界面产 阻,而具有较低的掺杂浓度,因此其表现出最好的耐蚀 生,并朝金属基体方向迁移,在金属/钝化膜界面湮灭 性,热影响区次之,而母材区最差. 另一方面,氧空位在金属/钝化膜界面生成,且向溶液 方向迁移,由于氧离子由溶液进入钝化膜,导致氧空位 杀 考文献 在钝化膜/溶液界面被消耗. C~对钝化膜的作用主要是通过在钝化膜/溶液 [Chandra K,Vivekanand K,Raja V S,et al.Low temperature 界面上占据氧空位,氧空位V。被过多的消耗后会通过 thermal ageing embrittlement of austenitic stainless steel welds and its electrochemical assessment.Corros Sci,2012,54:278 Schottky反应得到补充,同时又生成了更多的金属离 Lai C L,Tsay L W,Kai W,Chen C.The effects of cold rolling 子空位V:新生成的氧空位又会与更多的C”作用, and sensitisation on hydrogen embrittlement of AlSI 304 L welds. 如此自催化式地循环往复.当金属阳离子空位朝金 Corros Sci,2012,52:1187 属/钝化膜膜的界面迁移并聚集到一定程度时,并会挤 B]Fajardo S,Bastidas D M,Ryan M P,et al.Low-nickel stainless 开钝化膜并阻断其进一步生长,最终导致钝化膜的破 steel passive film in simulated concrete pore solution:A SIMS 裂和点蚀的形成 study.Appl Surf Sci,2010,256(21):6139 4] 根据文献[26],304L不锈钢的钝化膜呈双层结 Bautista A,Blanco G,Velasco F,et al.Corrosion performance of welded stainless steels reinforcements in simulated pore solutions. 构:内层为富C的p型半导体,并充当主要的耐蚀阻 Constr Build Mater,2007,21:1267 挡层:外层为富Fe的n型半导体,属于多孔疏松的渗 [5]Luo H,Dong C F,Li X G,et al.The electrochemical behaviour of 透层.由表3可以看出,当NaCl质量分数增大至 2205 duplex stainless steel in alkaline solutions with different pH 3.5%时,母材钝化膜内层p型半导体的受主密度高达 in the presence of chloride.Electrochim Acta,2012,64:211 11.72×10”cm3,说明内层的阳离子空位和氧空位浓 [6]Bastidas D M,Femandez-imenez A,Palomo A,et al.A study on the passive state stability of steel embedded in activated fly ash 度大幅度增加,这必然会导致点蚀更易发生,与以上所 mortars.Corros Sci,2008,50:1058 讨论的点缺陷模型理论是一致的 7]Bilmes P D,Llorente C L,Mendez C M,et al.Microstructure, 2.4点蚀形貌观察 heat treatment and pitting corrosion of 13CrNiMo plate and weld 将焊接接头整体在不同C1ˉ含量的混凝土模拟孔 metals.Corros Sci,2009,51:876 隙液中进行电化学极化曲线测试,图9为极化电流密 8] Kina A Y,Souza V M,Tavares SS M,et al.Influence of heat 度达到1mA·cm2后的点蚀形貌图.由图可以看出: treatments on the intergranular corrosion resistance of the AlSI 347 母材区(BM)形成的点蚀坑多为圆形,且直径大,蚀孔 cast and weld metal for high temperature services.I Mater Process Technol,2008,199:391 深:在焊缝区(WM)形成的多为直径小且蚀孔深度浅 9]Garcia C,Martin F,De Tiedra P,et al.Pitting corrosion of wel- 的不规则点蚀坑:由于焊缝和母材的耐蚀性有明显差 ded joints of austenitic stainless steels studied by using an electro- 异,因此将焊接接头整体进行电化学测试时,焊缝与母 chemical minicell.Corros Sci,2008,50:1184 材形成电偶对,使热影响区(HAZ)受到保护.同时,随 [o] Valcarce M B.Vazquez M.Carbon steel passivity examined in 着混凝土模拟孔隙液中Cˉ含量的增加,焊接接头三 alkaline solutions:the effect of chloride and nitrite ions.Electro- chim Acta,2008,53:5007 个区域上的点蚀坑均表现出直径变大,蚀坑加深的 [11]Vukovice M.The formation and growth of hydrous oxide film on 趋势. stainless steel in alkaline solution by potential cycling.Corros 3结论 Sci,1995,37:111 [12]Feliu V,Gonzalez J A,Andrade C,et al.Equivalent circuit for (1)焊接接头的三个区域的耐蚀性随着Cˉ含量 modelling the steel-concrete interface.I.experimental evidence 的增加而降低,焊缝/热影响区/母材的自腐蚀电位和 and theoretical predictions.Corros Sci,1998,40:975 [13]Abreu C M,Cristobal M J,Losada R,et al.High frequency im- 点蚀电位依次降低,而电荷转移电阻随着C】ˉ含量的 pedance spectroscopy study of passive films formed on AISI 316 增加而减小 stainless steel in alkaline medium.J Electroanal Chem,2004, (2)对于钝化膜的电容性能的研究表明,焊接接 572:335 头三个区域在不同电位区间内会发生P型型转变 04] Blanco G,Bautista A,Takenouti H.EIS study of passivation of 焊接接头在混凝土模拟孔隙液中形成的钝化膜具有双 austenitic and duplex stainless steels reinforcements in simulated 层膜结构.随着CIˉ含量的增加,施主密度和受主密度 pore solutions.Cem Concr Compos,2006,28:212 增加,表明钝化膜稳定性降低,从而使焊接接头三个区 [15]Fajardo S,Bastidas D M,Criado M,et al.Corrosion behaviour of a new low-nickel stainless steel in saturated calcium hydroxide 域的耐蚀性降低 solution.Constr Build Mater,2011,25:4190 (3)在C1ˉ含量相同的溶液中,焊缝区(308L奥 16 Hong T,Walter G W,Nagumo M.The observation of the early 氏体不锈钢)具有较高的自腐蚀电位和电荷转移电 stages of pitting on passivated type 304 stainless steel in a.5M工程科学学报,第 37 卷,第 9 期 到稳态的过程中,阳离子空位在钝化膜/溶液界面产 生,并朝金属基体方向迁移,在金属/钝化膜界面湮灭. 另一方面,氧空位在金属/钝化膜界面生成,且向溶液 方向迁移,由于氧离子由溶液进入钝化膜,导致氧空位 在钝化膜/溶液界面被消耗. Cl - 对钝化膜的作用主要是通过在钝化膜/溶液 界面上占据氧空位,氧空位 VO ·· 被过多的消耗后会通过 Schottky 反应得到补充,同时又生成了更多的金属离 子空位 Vχ' M . 新生成的氧空位又会与更多的 Cl - 作用, 如此自催化式地循环往复. 当金属阳离子空位朝金 属/钝化膜膜的界面迁移并聚集到一定程度时,并会挤 开钝化膜并阻断其进一步生长,最终导致钝化膜的破 裂和点蚀的形成. 根据文献[26],304 L 不锈钢的钝化膜呈双层结 构: 内层为富 Cr 的 p 型半导体,并充当主要的耐蚀阻 挡层; 外层为富 Fe 的 n 型半导体,属于多孔疏松的渗 透层. 由 表 3 可 以 看 出,当 NaCl 质 量 分 数 增 大 至 3. 5% 时,母材钝化膜内层 p 型半导体的受主密度高达 11. 72 × 1020 cm - 3 ,说明内层的阳离子空位和氧空位浓 度大幅度增加,这必然会导致点蚀更易发生,与以上所 讨论的点缺陷模型理论是一致的. 2. 4 点蚀形貌观察 将焊接接头整体在不同 Cl - 含量的混凝土模拟孔 隙液中进行电化学极化曲线测试,图 9 为极化电流密 度达到 1 mA·cm - 2 后的点蚀形貌图. 由图可以看出: 母材区( BM) 形成的点蚀坑多为圆形,且直径大,蚀孔 深; 在焊缝区( WM) 形成的多为直径小且蚀孔深度浅 的不规则点蚀坑; 由于焊缝和母材的耐蚀性有明显差 异,因此将焊接接头整体进行电化学测试时,焊缝与母 材形成电偶对,使热影响区( HAZ) 受到保护. 同时,随 着混凝土模拟孔隙液中 Cl - 含量的增加,焊接接头三 个区域上的点蚀坑均表现出直径变大,蚀坑加深的 趋势. 3 结论 ( 1) 焊接接头的三个区域的耐蚀性随着 Cl - 含量 的增加而降低,焊缝/热影响区/母材的自腐蚀电位和 点蚀电位依次降低,而电荷转移电阻随着 Cl - 含量的 增加而减小. ( 2) 对于钝化膜的电容性能的研究表明,焊接接 头三个区域在不同电位区间内会发生 p 型-n 型转变. 焊接接头在混凝土模拟孔隙液中形成的钝化膜具有双 层膜结构. 随着 Cl - 含量的增加,施主密度和受主密度 增加,表明钝化膜稳定性降低,从而使焊接接头三个区 域的耐蚀性降低. ( 3) 在 Cl - 含量相同的溶液中,焊缝区( 308 L 奥 氏体不锈钢) 具有较高的自腐蚀电位和电荷转移电 阻,而具有较低的掺杂浓度,因此其表现出最好的耐蚀 性,热影响区次之,而母材区最差. 参 考 文 献 [1] Chandra K,Vivekanand K,Raja V S,et al. Low temperature thermal ageing embrittlement of austenitic stainless steel welds and its electrochemical assessment. Corros Sci,2012,54: 278 [2] Lai C L,Tsay L W,Kai W,Chen C. The effects of cold rolling and sensitisation on hydrogen embrittlement of AISI 304 L welds. Corros Sci,2012,52: 1187 [3] Fajardo S,Bastidas D M,Ryan M P,et al. Low-nickel stainless steel passive film in simulated concrete pore solution: A SIMS study. Appl Surf Sci,2010,256( 21) : 6139 [4] Bautista A,Blanco G,Velasco F,et al. Corrosion performance of welded stainless steels reinforcements in simulated pore solutions. Constr Build Mater,2007,21: 1267 [5] Luo H,Dong C F,Li X G,et al. The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride. Electrochim Acta,2012,64: 211 [6] Bastidas D M,Fernández-Jiménez A,Palomo A,et al. A study on the passive state stability of steel embedded in activated fly ash mortars. Corros Sci,2008,50: 1058 [7] Bilmes P D,Llorente C L,Méndez C M,et al. Microstructure, heat treatment and pitting corrosion of 13CrNiMo plate and weld metals. Corros Sci,2009,51: 876 [8] Kina A Y,Souza V M,Tavares S S M,et al. Influence of heat treatments on the intergranular corrosion resistance of the AISI 347 cast and weld metal for high temperature services. J Mater Process Technol,2008,199: 391 [9] Garcia C,Martin F,De Tiedra P,et al. Pitting corrosion of wel￾ded joints of austenitic stainless steels studied by using an electro￾chemical minicell. Corros Sci,2008,50: 1184 [10] Valcarce M B,Vázquez M. Carbon steel passivity examined in alkaline solutions: the effect of chloride and nitrite ions. Electro￾chim Acta,2008,53: 5007 [11] Vukovic'c' M. The formation and growth of hydrous oxide film on stainless steel in alkaline solution by potential cycling. Corros Sci,1995,37: 111 [12] Feliu V,González J A,Andrade C,et al. Equivalent circuit for modelling the steel-concrete interface. Ⅰ. experimental evidence and theoretical predictions. Corros Sci,1998,40: 975 [13] Abreu C M,Cristobal M J,Losada R,et al. High frequency im￾pedance spectroscopy study of passive films formed on AISI 316 stainless steel in alkaline medium. J Electroanal Chem,2004, 572: 335 [14] Blanco G,Bautista A,Takenouti H. EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions. Cem Concr Compos,2006,28: 212 [15] Fajardo S,Bastidas D M,Criado M,et al. Corrosion behaviour of a new low-nickel stainless steel in saturated calcium hydroxide solution. Constr Build Mater,2011,25: 4190 [16] Hong T,Walter G W,Nagumo M. The observation of the early stages of pitting on passivated type 304 stainless steel in a 0. 5 M ·1172·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有