正在加载图片...
雪体特理黄尾躔库_20050404 PT简迷问题 Q0202001原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子 性、共价性、金属性和范德瓦耳斯性结合力的特点。 离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不 相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。当排斥力和吸引力相互平衡 时,形成稳定的离子晶体; 共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键 金属性结合:组成晶体时每个原子的最外层电子为所有原子所共有,因此在结合成金属晶体时, 失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。在这种情况下,电子 云和原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现为原 子聚合起来的作用。 范德瓦耳斯性结合:惰性元素最外层的电子为8个,具有球对称的稳定封闭结构。但在某一瞬时 由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。非极性分 子晶体就是依靠这瞬时偶极矩的互作用而结合的。 Q0203001什么是声子? 晶格振动的能量量子。在皛体中存在不冋频率振动的模式,称为晶格振动,皛格振动能量可以用 声子来描述,声子可以被激发,也可以湮灭。 Q02_03_002什么是固体比热的德拜模型?并简述计算结果的意义。 德拜提岀以连续介质的弹性波来代表格波,将布喇菲晶格看作是各向冋性的连续介质,有1个纵 波和2个独立的横波。 计算结果表明低温极限下:C(T/6D)= 12兀R(a-)-与温度的3次方成正比 温度愈低,德拜近似愈好,说明在温度很低时,只有长波格波的激发是主要的。 Q02_03_003什么是固体比热的爱因斯坦模型?并简述计算结果的意义。 对于有N个原子构成的晶体,晶体中所有的原子以相同的频率ωo振动 计算结果表明温度较高时:C≡3MkB-—与杜隆一珀替定律一致。 温度非常低时:C1=3Nk2(,)2eM一一按温度的指数形式降低,与实验结果Cp=AT3不符。 爱因斯坦模型忽略了各格波的频率差别。 Q02_04_001根据能带理论简述金属、半导体和绝缘体的导电性 REVISED TIME: 05-9-16 CREATED BY XCH固体物理_黄昆_题库_20050404 PART TWO 简述问题 Q02_02_001 原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子 性、共价性、金属性和范德瓦耳斯性结合力的特点。 离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不 相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。当排斥力和吸引力相互平衡 时,形成稳定的离子晶体; 共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键; 金属性结合:组成晶体时每个原子的最外层电子为所有原子所共有,因此在结合成金属晶体时, 失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。在这种情况下,电子 云和原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现为原 子聚合起来的作用。 范德瓦耳斯性结合:惰性元素最外层的电子为 8 个,具有球对称的稳定封闭结构。但在某一瞬时 由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。非极性分 子晶体就是依靠这瞬时偶极矩的互作用而结合的。 Q02_03_001 什么是声子? 晶格振动的能量量子。在晶体中存在不同频率振动的模式,称为晶格振动,晶格振动能量可以用 声子来描述,声子可以被激发,也可以湮灭。 Q02_03_002 什么是固体比热的德拜模型?并简述计算结果的意义。 德拜提出以连续介质的弹性波来代表格波,将布喇菲晶格看作是各向同性的连续介质,有 1 个纵 波和 2 个独立的横波。 计算结果表明低温极限下: 3 4 ( ) 15 12 ( / ) D V D T C T R Θ Θ = π —与温度的 3 次方成正比。 温度愈低,德拜近似愈好,说明在温度很低时,只有长波格波的激发是主要的。 Q02_03_003 什么是固体比热的爱因斯坦模型?并简述计算结果的意义。 对于有N个原子构成的晶体,晶体中所有的原子以相同的频率ω0振动。 计算结果表明温度较高时:CV ≅ 3NkB —— 与杜隆-珀替定律一致。 温度非常低时: k T B V B B e k T C Nk 0 0 2 3 ( ) ω ω = = − = ——按温度的指数形式降低,与实验结果 不符。 3 CV = AT 爱因斯坦模型忽略了各格波的频率差别。 Q02_04_001 根据能带理论简述金属、半导体和绝缘体的导电性; REVISED TIME: 05-9-16 - 3 - CREATED BY XCH
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有