正在加载图片...
·202· 智能系统学报 第15卷 [45]REDL C,GFOEHLER M,PANDY M G.Sensitivity of 13(1:117-123 muscle force estimates to variations in muscle-tendon [56]AN K N,HUI F C,MORREY B F,et al.Muscles across properties[J].Human movement science,2007,26(2): the elbow joint:a biomechanical analysis[J].Journal of 306-319. biomechanics,1981.1410):659-661,663-669. [46]AI Qingsong,DING Bo,LIU Quan,et al.A subject-spe- [57]JACOBSON M D,RAAB R,FAZELI B M,et al.Archi- cific EMG-driven musculoskeletal model for applications tectural design of the human intrinsic hand muscles[J]. in lower-limb rehabilitation robotics[J].International The journal of hand surgery,1992,17(5):804-809. journal of humanoid robotics,2016,13(3):1650005. [58]LANGENDERFER J.JERABEK S A.THANGAMANI [47]MENEGALDO LL,OLIVEIRA L F.The influence of V B,et al.Musculoskeletal parameters of muscles cross- modeling hypothesis and experimental methodologies in ing the shoulder and elbow and the effect of sarcomere the accuracy of muscle force estimation using EMG-driv- length sample size on estimation of optimal muscle en models[J].Multibody system dynamics,2012,28(1/2): length[J].Clinical biomechanics,2004,19(7):664-670 21-36 [59]LIEBER R L,FAZELI B M,BOTTE M J.Architecture of [48]QASHQAI A,EHSANI H,ROSTAMI M.A hill-based selected wrist flexor and extensor muscles[J.The journal EMG-driven model to estimate elbow torque during flex- of hand surgery,1990,15(2):244-250 ion and extention[C]//Proceedings of 2015 22nd Iranian [60]LIEBER R L.JACOBSON M D.FAZELI B M,et al.Ar- Conference on Biomedical Engineering.Tehran,Iran, chitecture of selected muscles of the arm and forearm: 2015 anatomy and implications for tendon transfer[J].The [49]LI Kexiang,ZHANG Jianhua,LIU Xuan,et al.Estima- journal of hand surgery,1992,17(5):787-798. tion of continuous elbow joint movement based on hu- [61]JIANG Ning,ENGLEHART K B,PARKER P A.Ex- man physiological structure[J].Biomedical engineering tracting simultaneous and proportional neural control in- online,2019,18(1):31 formation for multiple-DOF prostheses from the surface [50]PAU J WL.SAINI H,XIE S S Q,et al.An EMG-driven electromyographic signal[J].IEEE transactions on bio- neuromuscular interface for human elbow joint[C]//Pro- medical engineering,2009,56(4):1070-1080. ceedings of 2010 3rd IEEE RAS EMBS International [62]DOWLING D J.The use of electromyography for the Conference on Biomedical Robotics and Biomechatron- noninvasive prediction of muscle forces[J].Sports medi- ics.Tokyo,Japan,2010. cine,1997,242):82-96. [51]HOLZBAUR K R S.,MURRAY W M.DELP S L.A [63]RASCHKE U,CHAFFIN D B.Support for a linear model of the upper extremity for simulating musculo- length-tension relation of the torso extensor muscles:an skeletal surgery and analyzing neuromuscular control[J]. investigation of the length and velocity EMG-force rela- Annals of biomedical engineering,2005,33(6):829-840. tionships[J].Journal of biomechanics,1996,29(12): [52]SON J.HWANG S J.LEE J S,et al.Optimization of 1597-1604. muscle parameters to predict ankle joint moments[C]// [64]ROSEN J,BRAND M,FUCHS M B,et al.A myosignal- Proceedings of 6th World Congress of Biomechanics. based powered exoskeleton system[J].IEEE transactions Singapore,2010. on systems,man,and cybernetics-Part A:systems and hu- [53]BUONGIORNO D.BARSOTTI M.BARONE F.et al.A mans.2001,31(3):210-222. linear approach to optimize an EMG-Driven Neuromus- [65]MANAL K,GRAVARE-SILBERNAGEL K, culoskeletal model for movement intention detection in BUCHANAN T S.A real-time EMG-driven musculo- myo-control:a case study on shoulder and elbow joints[J]. skeletal model of the ankle[J].Multibody system dynam- Frontiers in neurorobotics,2018,12:74. ics,2012,28(1/2):169-180 [54]MICHALEWICZ Z,NAZHIYATH G.Genocop III:a co- [66]ROSEN J,FUCHS M B,ARCAN M.Performances of evolutionary algorithm for numerical optimization prob- hill-type and neural network muscle models-toward a lems with nonlinear constraints[C]//Proceedings of 1995 myosignal-based exoskeleton[J].Computers and biomed- IEEE International Conference on Evolutionary Computa- ical research,1999,32(5):415-439. tion.Perth,WA,Australia,1995. [67]MENEGALDO LL,OLIVEIRA L F.An EMG-driven [55]SON J,KIM S,AHN S,et al.Determination of the dy- model to evaluate quadriceps strengthening after an namic knee joint range of motion during leg extension ex- isokinetic training[J].Procedia IUTAM,2011,2: ercise using an EMG-driven model[J].International journ- 131-141. al of precision engineering and manufacturing,2012, [68]MENEGALDO LL.Real-time muscle state estimationREDL C, GFOEHLER M, PANDY M G. Sensitivity of muscle force estimates to variations in muscle–tendon properties[J]. Human movement science, 2007, 26(2): 306–319. [45] AI Qingsong, DING Bo, LIU Quan, et al. A subject-spe￾cific EMG-driven musculoskeletal model for applications in lower-limb rehabilitation robotics[J]. International journal of humanoid robotics, 2016, 13(3): 1650005. [46] MENEGALDO L L, OLIVEIRA L F. The influence of modeling hypothesis and experimental methodologies in the accuracy of muscle force estimation using EMG-driv￾en models[J]. Multibody system dynamics, 2012, 28(1/2): 21–36. [47] QASHQAI A, EHSANI H, ROSTAMI M. A hill-based EMG-driven model to estimate elbow torque during flex￾ion and extention[C]//Proceedings of 2015 22nd Iranian Conference on Biomedical Engineering. Tehran, Iran, 2015. [48] LI Kexiang, ZHANG Jianhua, LIU Xuan, et al. Estima￾tion of continuous elbow joint movement based on hu￾man physiological structure[J]. Biomedical engineering online, 2019, 18(1): 31. [49] PAU J W L, SAINI H, XIE S S Q, et al. An EMG-driven neuromuscular interface for human elbow joint[C]//Pro￾ceedings of 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatron￾ics. Tokyo, Japan, 2010. [50] HOLZBAUR K R S, MURRAY W M, DELP S L. A model of the upper extremity for simulating musculo￾skeletal surgery and analyzing neuromuscular control[J]. Annals of biomedical engineering, 2005, 33(6): 829–840. [51] SON J, HWANG S J, LEE J S, et al. Optimization of muscle parameters to predict ankle joint moments[C]// Proceedings of 6th World Congress of Biomechanics. Singapore, 2010. [52] BUONGIORNO D, BARSOTTI M, BARONE F, et al. A linear approach to optimize an EMG-Driven Neuromus￾culoskeletal model for movement intention detection in myo-control: a case study on shoulder and elbow joints[J]. Frontiers in neurorobotics, 2018, 12: 74. [53] MICHALEWICZ Z, NAZHIYATH G. Genocop III: a co￾evolutionary algorithm for numerical optimization prob￾lems with nonlinear constraints[C]//Proceedings of 1995 IEEE International Conference on Evolutionary Computa￾tion. Perth, WA, Australia, 1995. [54] SON J, KIM S, AHN S, et al. Determination of the dy￾namic knee joint range of motion during leg extension ex￾ercise using an EMG-driven model[J]. International journ￾al of precision engineering and manufacturing, 2012, [55] 13(1): 117–123. AN K N, HUI F C, MORREY B F, et al. Muscles across the elbow joint: a biomechanical analysis[J]. Journal of biomechanics, 1981, 14(10): 659–661, 663-669. [56] JACOBSON M D, RAAB R, FAZELI B M, et al. Archi￾tectural design of the human intrinsic hand muscles[J]. The journal of hand surgery, 1992, 17(5): 804–809. [57] LANGENDERFER J, JERABEK S A, THANGAMANI V B, et al. Musculoskeletal parameters of muscles cross￾ing the shoulder and elbow and the effect of sarcomere length sample size on estimation of optimal muscle length[J]. Clinical biomechanics, 2004, 19(7): 664–670. [58] LIEBER R L, FAZELI B M, BOTTE M J. Architecture of selected wrist flexor and extensor muscles[J]. The journal of hand surgery, 1990, 15(2): 244–250. [59] LIEBER R L, JACOBSON M D, FAZELI B M, et al. Ar￾chitecture of selected muscles of the arm and forearm: anatomy and implications for tendon transfer[J]. The journal of hand surgery, 1992, 17(5): 787–798. [60] JIANG Ning, ENGLEHART K B, PARKER P A. Ex￾tracting simultaneous and proportional neural control in￾formation for multiple-DOF prostheses from the surface electromyographic signal[J]. IEEE transactions on bio￾medical engineering, 2009, 56(4): 1070–1080. [61] DOWLING D J. The use of electromyography for the noninvasive prediction of muscle forces[J]. Sports medi￾cine, 1997, 24(2): 82–96. [62] RASCHKE U, CHAFFIN D B. Support for a linear length-tension relation of the torso extensor muscles: an investigation of the length and velocity EMG-force rela￾tionships[J]. Journal of biomechanics, 1996, 29(12): 1597–1604. [63] ROSEN J, BRAND M, FUCHS M B, et al. A myosignal￾based powered exoskeleton system[J]. IEEE transactions on systems, man, and cybernetics-Part A: systems and hu￾mans, 2001, 31(3): 210–222. [64] MANAL K, GRAVARE-SILBERNAGEL K, BUCHANAN T S. A real-time EMG-driven musculo￾skeletal model of the ankle[J]. Multibody system dynam￾ics, 2012, 28(1/2): 169–180. [65] ROSEN J, FUCHS M B, ARCAN M. Performances of hill-type and neural network muscle models—toward a myosignal-based exoskeleton[J]. Computers and biomed￾ical research, 1999, 32(5): 415–439. [66] MENEGALDO L L, OLIVEIRA L F. An EMG-driven model to evaluate quadriceps strengthening after an isokinetic training[J]. Procedia IUTAM, 2011, 2: 131–141. [67] [68] MENEGALDO L L. Real-time muscle state estimation ·202· 智 能 系 统 学 报 第 15 卷
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有