正在加载图片...
regenerating anticancer nanosystem: An effective strategy to shielded drug delivery based on ROS-responsive coordination subdue tumor's multidrug resistance [J]. J Control Release, assembly for enhanced therapeutic efficacy []. Nanomed- 2014( 370-383 nanotechnol,2016,12(2):485-486 [19] ZHANG D, WEI Y, CHEN K, et al. Biocompatible [6] DENG Z, QIAN Y, YU Y, et al. Engineering intracellular oxygen species(ROS)-responsive delivery nanocarriers and nanoreactors from oxidation- drug delivery vehicles U. Adv Healthe Mater, 201 linking and permeabilizing inside live cells [] J Am Chem [20] XIAO C, DING J, MA L, et al. Synthesis of thermal and Soc,2016,138(3):10452-10466. oxidation dual responsive polymers for reactive oxyg 37] DENG H, ZHAO X, LIU J, et al. Reactive oxygen spec species (ROS Triggered drug release P]. Polym Chem-uk, (ROS)responsive PEG-PCL nanoparticles with pH-controlled 2015,6(5):738-747 negative-to-positive charge reversal for intracellular delivery 21] wU w, YANG X, LIU B, et al. Lipase-catalyzed synthesis of of doxorubicin J]. J Mater Chem B, 2015, 3(48): 9397-9408 xidation-responsive poly(ethylene glycol)l-b-poly(beta-thioether [38] ZHAO W, QIAO Z, DUAn Z, et al. Synthesis and ester) amphiphilic block copolymers p]. Rsc Adv, 2016, 6(14) bly of pH and ROs dual 1870-11879 hioester)s []. Acta Chim Sinica, 2016, 74(3): 234-240 22 ZHOU F, ZHENG B, ZHANG Y, et al. Construction of 39 CHIANG Y, YEN Y, LO C Reactive oxygen species and near-infrared light-triggered reactive oxygen species-sensitive glutathione dual redox-responsive micelles for selective CN/SIO2-RB DOX)aPPADT nanoparticles for cytotoxicity of cancer J ]. Biomaterials, 2015(61): 150-16 simultaneous chemotherapy and photodynamic therapy P 440 ZUO C, DAI X, ZHAO S, et al. fabrication of dual-redox Nanotechnology, 2016, 27 (23): 235601 responsive supramolecular copolymers using a reducible 23] KIM J S, JO S D, SEAH G L, et al. ROS-induced beta-cyclodextran-ferrocene double-head unit Acs Macro biodegradable polythioketal nanoparticles for intracellular Let2016,5(7):873-878 delivery of anti-cancer therapeutics ] J Ind Eng Chem, [41 CHen F, ZHANG J, HE Y, et al. Glycyrrhetinic 2015(21):1137-1142 id-decorated and reduction- sensitive micelles to enhance the 24 WANG X, MENG G, ZHANG S, et al. A Reactive O-1(2) onsive combined treatment system tanshinone IIA P]. Biomater Sci, 2016, 4(1): 167-182 chemotherapy for cancer ] Sci Rep-uk, 2016(6): 29911 [42] SHIM M S, XIA Y. A reactive oxygen species [25] CAO W, GU Y, LI T, et al. Ultra-sensitive ROS-responsive (ROS)-responsive polymer for safe, efficient, and targeted tellurium-containing polymers []. Chem Commun, 2015, cancer cells ] Angew Chem Int Ed Engl 51(32)7069-7071 2013,52(27):6926-6929 [26 WANG L, FAN F, CAo W, et al. Ultrasensiti [43]LI J, KE W, WANG L, et al. Self-sufficing H2O2-I molecules and phospholipids []. Acs Appl Mater Interfaces synergistic oxidation-chemotherapy U. J Control Releas 2015,7(29):16054-16060 2016(225:64-74 [27] FANG R, XU H, CAO w, et al. Reactive oxygen species 144LIU B, WANG D, LIU Y, et al. Hydrogen peroxide-responsive polymer ] Polym Chem-uk, 2015, 6(15): 2817-2821 anticancer hyperbranched polymer micelles for enhanced cell ptosis [ ]. Polym Chem-uk, 2015, 6(18): 3460-3471 8 WANG M, SUN S, NEUFELD C I, et al. Reactive oxygen [45] XIAO C, DING J, ZHUANG X, et al. PEG-based thermo- responsive poly(beta-thioether ester) for ROS-triggered drug delivery for targeted cancer therapy p]. Angew Chem Int Edit, delivery ] J Control Release, 2015(213): e22. [46 GUPTA M K, MARTIN J R, WERFEL T A, et al. Cell 229 MA N, LI Y, XU H, et al. Dual redox responsive assemblies formed from diselenide block copolymers . J Am Chem Soc hydrogels with ROS-triggered degradation and drug release I 2010,132(2):442-443 J Am Chem Soc,2014,136(42):14896-14902 30] DEEPAGAN V G,KWON S, YOU D G, et al. In situ [47] SHI J, CHEN Z, WANG B, et al. Reactive oxygen diselenide-crosslinked polymeric micelles for ROS-mediated species-manipulated drug release from a smart envelope-type anticancer drug delivery [] Biomaterials, 2016(103): 56-66 titanium nanovehicle for tumor sonodynamic- 31]LIU L, RUI L, GAO Y, et al. Self-assembly and disassembly chemotherapy []. Acs Appl Mater Interfaces, 2015, 7(51) f a redox-responsive ferrocene-containing amphiphilic block 28554-28565 copolymer for controlled release P]. Polym Chem-uk, 2015, [48 YUE C, ZHANG C, ALFRANCA G, et al. Near-infrared light 0):1817-1829 triggered ROS-activated theranostic platform based on B32CORREIA-LEDO D, ARNOLD AA, MAUZEROLL J Ceb-CPT-UCNPs for simultaneous fluorescence imaging and Synthesis of redox active ferrocene- modified phospholipids by chemo-Photodynamic combined therapy P]. Theranostics, ransphosphatidylation reaction and chronoamperometry 2016,6(4):456-469 the corresponding redox sensitive liposome P]. J Am [49] QIAO Z Y, ZHAO WJ, CONG Y, et al. Self-assembled Soc,2010,132(43):15120-15123 ROS-sensitive polymer-peptide therapeutics incorporating 33] JEONG D, BAE B, PARK S, et al. Reactive oxygen species built-in reporters for evaluation of treatment efficacy PI esponsive drug releasing nanoparticle based on chondroitin Biomacromolecules, 2016, 17(5): 1643-1652. sulfate-anthocyanin nanocomplex for efficient tumor therapy [50] JAGER E, HOCHERL A, JANOUSKOVA O, et al. U]. J Control Release, 2016(222): 78-85. Fluorescent boronate-based polymer nanoparticles with [34] BROADERS K E, GRANDHE S, FRECHET J M. A reactive oxygen species (ROSH-triggered cargo release for ompatible oxidation-triggered carrier polymer with ug-delivery applications P]. Nanoscale, 2016, 8(13) potential in therapeutics U).J Am Chem Soc, 2011, 133(4) 756-758 收稿日期:2016-09-18 35] QIAO H, GAO Y, SHAO Y, et al. Biomolecular corona- (本文责编:蔡珊珊) Chin j Mod Appl Pharm, 2017 May, Vol 34 No5 中国现代应用药学2017年5月第34卷第5期·770· Chin J Mod Appl Pharm, 2017 May, Vol.34 No.5 中国现代应用药学 2017 年 5 月第 34 卷第 5 期 regenerating anticancer nanosystem: An effective strategy to subdue tumor’s multidrug resistance [J]. J Control Release, 2014(196): 370-383. [19] ZHANG D, WEI Y, CHEN K, et al. Biocompatible reactive oxygen species (ROS)-responsive nanoparticles as superior drug delivery vehicles [J]. Adv Healthc Mater, 2015, 4(1): 69-76. [20] XIAO C, DING J, MA L, et al. Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release [J]. Polym Chem-uk, 2015, 6(5): 738-747. [21] WU W, YANG X, LIU B, et al. Lipase-catalyzed synthesis of oxidation-responsive poly(ethylene glycol)-b-poly (beta-thioether ester) amphiphilic block copolymers [J]. Rsc Adv, 2016, 6(14): 11870-11879. [22] ZHOU F, ZHENG B, ZHANG Y, et al. Construction of near-infrared light-triggered reactive oxygen species-sensitive (UCN/SiO2-RB + DOX)@PPADT nanoparticles for simultaneous chemotherapy and photodynamic therapy [J]. Nanotechnology, 2016, 27(23): 235601. [23] KIM J S, JO S D, SEAH G L, et al. ROS-induced biodegradable polythioketal nanoparticles for intracellular delivery of anti-cancer therapeutics [J]. J Ind Eng Chem, 2015(21): 1137-1142. [24] WANG X, MENG G, ZHANG S, et al. A Reactive O-1(2) - responsive combined treatment system of photodynamic and chemotherapy for cancer [J]. Sci Rep-uk, 2016(6): 29911. [25] CAO W, GU Y, LI T, et al. Ultra-sensitive ROS-responsive tellurium-containing polymers [J]. Chem Commun, 2015, 51(32): 7069-7071. [26] WANG L, FAN F, CAO W, et al. Ultrasensitive ROS-responsive coassemblies of tellurium-containing molecules and phospholipids [J]. Acs Appl Mater Interfaces, 2015, 7(29): 16054-16060. [27] FANG R, XU H, CAO W, et al. Reactive oxygen species (ROS)-responsive tellurium-containing hyperbranched polymer [J]. Polym Chem-uk, 2015, 6(15): 2817-2821. [28] WANG M, SUN S, NEUFELD C I, et al. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy [J]. Angew Chem Int Edit, 2014, 53(49): 13444-13448. [29] MA N, LI Y, XU H, et al. Dual redox responsive assemblies formed from diselenide block copolymers [J]. J Am Chem Soc, 2010, 132(2): 442-443. [30] DEEPAGAN V G, KWON S, YOU D G, et al. In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery [J]. Biomaterials, 2016(103): 56-66. [31] LIU L, RUI L, GAO Y, et al. Self-assembly and disassembly of a redox-responsive ferrocene-containing amphiphilic block copolymer for controlled release [J]. Polym Chem-uk, 2015, 6(10): 1817-1829. [32] CORREIA-LEDO D, ARNOLD A A, MAUZEROLL J. Synthesis of redox active ferrocene-modified phospholipids by transphosphatidylation reaction and chronoamperometry study of the corresponding redox sensitive liposome [J]. J Am Chem Soc, 2010, 132(43): 15120-15123. [33] JEONG D, BAE B, PARK S, et al. Reactive oxygen species responsive drug releasing nanoparticle based on chondroitin sulfate-anthocyanin nanocomplex for efficient tumor therapy [J]. J Control Release, 2016(222): 78-85. [34] BROADERS K E, GRANDHE S, FRECHET J M. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics [J]. J Am Chem Soc, 2011, 133(4): 756-758. [35] QIAO H, GAO Y, SHAO Y, et al. Biomolecular corona￾shielded drug delivery based on ROS-responsive coordination assembly for enhanced therapeutic efficacy [J]. Nanomed￾nanotechnol, 2016, 12(2): 485-486. [36] DENG Z, QIAN Y, YU Y, et al. Engineering intracellular delivery nanocarriers and nanoreactors from oxidation￾responsive polymersomes via synchronized bilayer cross￾linking and permeabilizing inside live cells [J]. J Am Chem Soc, 2016, 138(33): 10452-10466. [37] DENG H, ZHAO X, LIU J, et al. Reactive oxygen species (ROS) responsive PEG-PCL nanoparticles with pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin [J]. J Mater Chem B, 2015, 3(48): 9397-9408. [38] ZHAO W, QIAO Z, DUAN Z, et al. Synthesis and self-assembly of pH and ROS dual responsive poly(beta￾thioester)s [J]. Acta Chim Sinica, 2016, 74(3): 234-240. [39] CHIANG Y, YEN Y, LO C. Reactive oxygen species and glutathione dual redox-responsive micelles for selective cytotoxicity of cancer [J]. Biomaterials, 2015(61): 150-161. [40] ZUO C, DAI X, ZHAO S, et al. fabrication of dual-redox responsive supramolecular copolymers using a reducible beta-cyclodextran-ferrocene double-head unit [J]. Acs Macro Lett, 2016, 5(7): 873-878. [41] CHEN F, ZHANG J, HE Y, et al. Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA [J]. Biomater Sci, 2016, 4(1): 167-182. [42] SHIM M S, XIA Y. A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells [J]. Angew Chem Int Ed Engl, 2013, 52(27): 6926-6929. [43] LI J, KE W, WANG L, et al. Self-sufficing H2O2-responsive nanocarriers through tumor-specific H2O2 production for synergistic oxidation-chemotherapy [J]. J Control Release, 2016(225): 64-74. [44] LIU B, WANG D, LIU Y, et al. Hydrogen peroxide-responsive anticancer hyperbranched polymer micelles for enhanced cell apoptosis [J]. Polym Chem-uk, 2015, 6(18): 3460-3471. [45] XIAO C, DING J, ZHUANG X, et al. PEG-based thermo￾responsive poly (beta-thioether ester) for ROS-triggered drug delivery [J]. J Control Release, 2015(213): e22. [46] GUPTA M K, MARTIN J R, WERFEL T A, et al. Cell protective, ABC triblock polymer-based thermoresponsive hydrogels with ROS-triggered degradation and drug release [J]. J Am Chem Soc, 2014, 136(42): 14896-14902. [47] SHI J, CHEN Z, WANG B, et al. Reactive oxygen species-manipulated drug release from a smart envelope-type mesoporous titanium nanovehicle for tumor sonodynamic￾chemotherapy [J]. ACS Appl Mater Interfaces, 2015, 7(51): 28554-28565. [48] YUE C, ZHANG C, ALFRANCA G, et al. Near-infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for simultaneous fluorescence imaging and chemo-photodynamic combined therapy [J]. Theranostics, 2016, 6(4): 456-469. [49] QIAO Z Y, ZHAO W J, CONG Y, et al. Self-assembled ROS-sensitive polymer-peptide therapeutics incorporating built-in reporters for evaluation of treatment efficacy [J]. Biomacromolecules, 2016, 17(5): 1643-1652. [50] JAGER E, HOCHERL A, JANOUSKOVA O, et al. Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ROS)-triggered cargo release for drug-delivery applications [J]. Nanoscale, 2016, 8(13): 6958-6963. 收稿日期:2016-09-18 (本文责编:蔡珊珊)
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有