正在加载图片...
工程科学学报.第42卷,第5期:635-644.2020年5月 Chinese Journal of Engineering,Vol.42,No.5:635-644,May 2020 https://doi.org/10.13374/j.issn2095-9389.2019.05.05.001;http://cje.ustb.edu.cn 杨梅状Fe3O4@SnO2核壳材料制备及吸波性能 黄威,王玉江区,魏世丞,梁义,王 博,黄玉炜,徐滨士 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京100072 ☒通信作者,E-mail:hitwyj@126.com 摘要以磁性Fe3O4微球为模板,通过Stober法和水热法合成了一种杨梅状的新型Fe3O4@SnO2复合材料,主要应用于电 磁波吸收领域.借助X射线衍射、X光电子能谱、扫描电子显微镜、透射电子显微镜、振动样品磁强计和矢量网络分析仪对 其物相结构、表面元素、微观形貌、磁性及吸波特性进行了分析表征.分析结果表明,杨梅状的FeO,@SO2的球径约为 500nm.无明显团聚,具有良好的形貌均匀性.其SnO2层由纳米SnO,颗粒松散堆叠而成,具有大量的空隙结构.层厚约为 40nm.杨梅状的Fe3O4@SnO2具有较强的介电损耗能力,且有利于提升阻抗匹配性能,呈现出良好的电磁波吸收能力,当厚 度为1.4~2.8mm时,其最小反射损耗R(mim)均低于-20dB.其最优厚度为1.7mm,此时R(min)为-29dB,有效带宽为4.9GHz (13.1~18GHz),是一种具有发展潜力的吸波材料 关键词Fe3O4@SnO2;核壳;复合物:杨梅状;微波吸收 分类号TB34 Fabrication and microwave absorption properties of myrica rubra-like Fe3O4@SnO2 core-shell material HUANG Wei.WANG Yu-jiang,WEl Shi-cheng.LIANG yi,WANG bo,HUANG Yu-wei,XU Bin-shi National Key Laboratory for Remanufacturing,Academy of Army Armored Forces,Beijing 100072,China Corresponding author,E-mail:hitwyj@126.com ABSTRACT Against the background of the widespread application of various electronic devices and communication technologies, there is great concern regarding the problem of excessive radiation of electromagnetic waves with regard to electromagnetic interference, environmental pollution,and human health.Microwave-absorbing materials(MAMs)can transform electromagnetic energy into heat or dissipate electromagnetic waves via interference.Numerous theoretical and experimental studies have focused on the prevention of electromagnetic pollution and other related problems.Magnetite(FeO)is considered one of the most promising MAMs because of its excellent properties,such as high saturation magnetization,high Curie temperature,and low cost.However,the single FeO has the disadvantages of weak dielectric loss and easy oxidation,thereby limiting its application in the field of microwave absorption. Fabrication of Fe3O,-based nanocomposites is an effective solution for these problems.In this study,a new type of Fe3O@SnO2 composite similar to myrica rubra (Chinese bayberry)was synthesized by the Stober method and hydrothermal method using magnetic FeO microspheres as template.The phase structure,surface elements,micromorphology,magnetic properties,and microwave absorption properties of the samples were characterized by means of X-ray diffraction,X-ray photoelectron spectroscopy,scanning electron microscopy,and transmission electron microscopy and by observations based on a vibrating-sample magnetometer and vector network analyzer.The results show that the diameter of the myrica rubra-like FeO@SnO sphere is about 500 nm,without obvious agglomeration,and that it has good morphological uniformity.The SnO2 layer is composed of nano-SnO2 particles,which are loosely stacked.The layer possesses many porous structures and is about 40 nm thick.The myrica rubra-like Fe3O@SnO2 has strong dielectric 收稿日期:2019-05-05杨梅状 Fe3O4@SnO2 核壳材料制备及吸波性能 黄    威,王玉江苣,魏世丞,梁    义,王    博,黄玉炜,徐滨士 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072 苣通信作者,E-mail:hitwyj@126.com 摘    要    以磁性 Fe3O4 微球为模板,通过 Stöber 法和水热法合成了一种杨梅状的新型 Fe3O4@SnO2 复合材料,主要应用于电 磁波吸收领域. 借助 X 射线衍射、X 光电子能谱、扫描电子显微镜、透射电子显微镜、振动样品磁强计和矢量网络分析仪对 其物相结构、表面元素、微观形貌、磁性及吸波特性进行了分析表征. 分析结果表明,杨梅状的 Fe3O4@SnO2 的球径约为 500 nm,无明显团聚,具有良好的形貌均匀性. 其 SnO2 层由纳米 SnO2 颗粒松散堆叠而成,具有大量的空隙结构,层厚约为 40 nm. 杨梅状的 Fe3O4@SnO2 具有较强的介电损耗能力,且有利于提升阻抗匹配性能,呈现出良好的电磁波吸收能力,当厚 度为 1.4~2.8 mm 时,其最小反射损耗 RL(min)均低于−20 dB. 其最优厚度为 1.7 mm,此时 RL(min)为−29 dB,有效带宽为 4.9 GHz (13.1~18 GHz),是一种具有发展潜力的吸波材料. 关键词    Fe3O4@SnO2;核壳;复合物;杨梅状;微波吸收 分类号    TB34 Fabrication  and  microwave  absorption  properties  of  myrica  rubra-like  Fe3O4@SnO2 core-shell material HUANG Wei,WANG Yu-jiang苣 ,WEI Shi-cheng,LIANG yi,WANG bo,HUANG Yu-wei,XU Bin-shi National Key Laboratory for Remanufacturing, Academy of Army Armored Forces, Beijing 100072, China 苣 Corresponding author, E-mail:hitwyj@126.com ABSTRACT    Against  the  background  of  the  widespread  application  of  various  electronic  devices  and  communication  technologies, there is great concern regarding the problem of excessive radiation of electromagnetic waves with regard to electromagnetic interference, environmental pollution, and human health. Microwave-absorbing materials (MAMs) can transform electromagnetic energy into heat or dissipate  electromagnetic  waves via interference.  Numerous  theoretical  and  experimental  studies  have  focused  on  the  prevention  of electromagnetic pollution and other related problems. Magnetite (Fe3O4 ) is considered one of the most promising MAMs because of its excellent properties, such as high saturation magnetization, high Curie temperature, and low cost. However, the single Fe3O4 has the disadvantages  of  weak  dielectric  loss  and  easy  oxidation,  thereby  limiting  its  application  in  the  field  of  microwave  absorption. Fabrication  of  Fe3O4 -based  nanocomposites  is  an  effective  solution  for  these  problems.  In  this  study,  a  new  type  of  Fe3O4@SnO2 composite similar to myrica rubra (Chinese bayberry) was synthesized by the Stöber method and hydrothermal method using magnetic Fe3O4 microspheres  as  template.  The  phase  structure,  surface  elements,  micromorphology,  magnetic  properties,  and  microwave absorption  properties  of  the  samples  were  characterized  by  means  of  X-ray  diffraction,  X-ray  photoelectron  spectroscopy,  scanning electron microscopy, and transmission electron microscopy and by observations based on a vibrating-sample magnetometer and vector network analyzer. The results show that the diameter of the myrica rubra-like Fe3O4@SnO2 sphere is about 500 nm, without obvious agglomeration, and that it has good morphological uniformity. The SnO2 layer is composed of nano-SnO2 particles, which are loosely stacked. The layer possesses many porous structures and is about 40 nm thick. The myrica rubra-like Fe3O4@SnO2 has strong dielectric 收稿日期: 2019−05−05 工程科学学报,第 42 卷,第 5 期:635−644,2020 年 5 月 Chinese Journal of Engineering, Vol. 42, No. 5: 635−644, May 2020 https://doi.org/10.13374/j.issn2095-9389.2019.05.05.001; http://cje.ustb.edu.cn
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有