正在加载图片...
王坤等:超声外场对SiC/7085复合材料颗粒微观团聚与界面结合的作用机理 ·243· 较大的提升 high intensity ultrasonic treatment.Mater Mech Eng,2003,27 (7):1 4结论 (潘蕾,陈锋,吴申庆,等.高能超声作用下金属基复合材料 的制备.机械工程材料,2003,27(7):1) (1)在半固态混合-机械搅拌的工艺下,受限于 [8]Ma J Y.Kang J W,Huang T Y.Novel application of ultrasonic 搅拌剪切力,大的颗粒团聚能被打散,而对于小的团聚 cavitation for fabrication of TiN/Al composites.J Alloys Compd, 体效果并不理想:在超声外场的施加下,超声空化所产 2016,661:176 生的微射流能够打破小的团聚体的外层包裹层:在超 [9]Hong S,Wu Y P,Zhang J F,et al.Ultrasonic cavitation erosion 声毛细作用下熔体进入团聚颗粒之间将颗粒冲散:散 of high-velocity oxygen-fuel (HVOF)sprayed near-nanostructured 开的颗粒在声流搅拌熔体的作用下均匀分散于熔 WC-10Co-4Cr coating in NaCl solution.Ultrason Sonochem, 体中; 2015,26:87 [10] Macwan A,Patel V K,Jiang XQ,et al.Ultrasonic spot welding (2)在半固态混合-机械搅拌的工艺下,由于基 of Al/Mg/Al tri-layered clad sheets.Mater Des,2014,62:344 体与颗粒之间氧化膜与气体的存在,因此很难实现颗 [11]Li F G,Yu S R.Research progress on interface of particle rein- 粒与基体的完全润湿:超声空化效应在颗粒附近产生 foreed metal matrix composites.China Foundry Mach Technol 大量的微射激流,这种冲击能够有效破碎氧化膜,除去 2015(4):43 气体层,使熔体与颗粒直接接触并发生化学反应:镁元 (李凡国,于思荣.颗粒增强金属基复合材料界面研究进展 中国铸造装备与技术,2015(4):43) 素(质量分数为1.32%)参与界面反应,生成界面强化 [12]Ren J P,Song R G,Chen X M,et al.Development and states of 产物尖晶石(MgA山,0,),获得了更优的界面结合 heat-treatment process for 7xxx series aluminum alloys.Hot Work Technol,2009,38(6):119 参考文献 (任建平,宋仁国,陈小明,等.7x系铝合金热处理工艺的 [1]Li M,Wang A Q,Xie J P,et al.The present research situation 研究现状及进展.热加工工艺,2009,38(6):119) and progress of Sic particle reinforced aluminum matrix compos- [13]Lee K B,Kwon H.Strength of Al-Zn-Mg-Cu matrix composite ites.Pouder Metall Ind,2015,25(3):55 reinforced with SiC particles.Metall Mater Trans A,2002,33 (李敏,王爱琴,谢敬佩.等.SiC颗粒增强A基复合材料的 (2):455 研究现状与进展.粉末冶金工业,2015,25(3):55) [14]Chen D X,Li X Q,Li Z H,et al.Microstructure and macro- [2]Xiao R L,Zheng HA,Fu D S,et al.Preparation and application segregation law of ultrasonic cast 7050 aluminum alloy ingots.J progress of aluminum matrix composites.Foundry Technol,2015, Unir Sci Technol Beijing,2012,34(6):666 36(5):1118 (陈鼎欣,李晓谦,黎正华,等.超声铸造7050铝合金的微 (肖荣林,郑化安,付东升,等.铝基复合材料的制备及应用 观组织和宏观偏析规律.北京科技大学学报,2012,34(6): 进展.铸造技术,2015,36(5):1118) 666) [3]Kong Y R,Guo Q,Zhang D.Review on interfacial properties of [15]Jiang R P,Li X Q,Liu R G,et al.Study on grain-refining particle-reinforced aluminum matrix composites.Mater Rev,2015, mechanism of power ultrasound on pure aluminum and regional. 29(5):34 Spec Cast Nonferrous Alloys,2008,28(7):560 (孔亚茹,郭强,张获.颗粒增强铝基复合材料界面性能的研 (蒋日鹏,李晓谦,刘荣光,等.功率超声对纯铝的细品机制 究.材料导报.2015,29(5):34) 及作用区域研究.特种铸造及有色合金,2008,28(7): [4]Liao Y M.Application of SiC to non-ferrous metal alloys and the 560) preparation of composites reinforced by it.Heat Treat,2015,30 [16]Luo Z P.Crystallography of SiC/MgAl20/Al interfaces in a (1):11 pre-oxidized SiC reinforced SiC/Al composite.Acta Mater, (廖钰敏.SC在有色金属合金中的应用及其增强复合材料的 2006,54(1):47 制备.热处理,2015,30(1):11) [17]Fang X.Thoeretical Prediction of Interfacial Reaction and Work of [5]Yang R,Wang X J,Wu X P,et al.Progress in stir-casting Adhesion in SiC/Al Composites Dissertation].Shanghai:Shang- process for fabricating SiCp/Al composites.Mater Rev,2013,27 hai Jiao Tong University,2013 (5):131 (房鑫.SiC/AI复合材料界面反应与粘着功理论预测研究 (杨锐,王筱峻,吴星平,等.搅拌铸造制备SC颗粒增强铝 [学位论文].上海:上海交通大学,2013) 基复合材料研究现状.材料导报,2013,27(5):131) [18]Liu J Y,Liu Y C,Liu G Q,et al.Oxidation behavior of silicon [6]Jiang R P,Li X Q,Zhang L H,et al.Research on the solidifica- carbide particales and their interfacial characterization in alumi- tion structure refining laws of pure aluminum under different meth- num matrix composites.Chin J Nonferrous Met,2002,12(5): ods of ultrasonic vibration.J Mater Eng,2009(2):6 961 (蒋日鹏,李晓谦,张立华,等.超声施振方式对纯铝凝固组 (刘俊友,刘英才,刘国权,等.SiC颗粒氧化行为及SiC,/ 织细化规律的研究.材料工程,2009(2):6) 铝基复合材料界面特征.中国有色金属学报,2002,12(5): [7]Pan L,Chen F,Wu S Q,et al.Review of MMC fabrication under 961)王 坤等: 超声外场对 SiCp / 7085 复合材料颗粒微观团聚与界面结合的作用机理 较大的提升. 4 结论 (1) 在半固态混合鄄鄄 机械搅拌的工艺下,受限于 搅拌剪切力,大的颗粒团聚能被打散,而对于小的团聚 体效果并不理想;在超声外场的施加下,超声空化所产 生的微射流能够打破小的团聚体的外层包裹层;在超 声毛细作用下熔体进入团聚颗粒之间将颗粒冲散;散 开的颗粒在声流搅拌熔体的作用下均匀分散于熔 体中; (2) 在半固态混合鄄鄄 机械搅拌的工艺下,由于基 体与颗粒之间氧化膜与气体的存在,因此很难实现颗 粒与基体的完全润湿;超声空化效应在颗粒附近产生 大量的微射激流,这种冲击能够有效破碎氧化膜,除去 气体层,使熔体与颗粒直接接触并发生化学反应;镁元 素(质量分数为 1郾 32% )参与界面反应,生成界面强化 产物尖晶石(MgAl 2O4 ),获得了更优的界面结合. 参 考 文 献 [1] Li M, Wang A Q, Xie J P, et al. The present research situation and progress of SiC particle reinforced aluminum matrix compos鄄 ites. Powder Metall Ind, 2015, 25(3): 55 (李敏, 王爱琴, 谢敬佩, 等. SiC 颗粒增强 Al 基复合材料的 研究现状与进展. 粉末冶金工业, 2015, 25(3): 55) [2] Xiao R L, Zheng H A, Fu D S, et al. Preparation and application progress of aluminum matrix composites. Foundry Technol, 2015, 36(5): 1118 (肖荣林, 郑化安, 付东升, 等. 铝基复合材料的制备及应用 进展. 铸造技术, 2015, 36(5): 1118) [3] Kong Y R, Guo Q, Zhang D. Review on interfacial properties of particle鄄reinforced aluminum matrix composites. Mater Rev, 2015, 29(5): 34 (孔亚茹, 郭强, 张荻. 颗粒增强铝基复合材料界面性能的研 究. 材料导报, 2015, 29(5): 34) [4] Liao Y M. Application of SiC to non鄄ferrous metal alloys and the preparation of composites reinforced by it. Heat Treat, 2015, 30 (1): 11 (廖钰敏. SiC 在有色金属合金中的应用及其增强复合材料的 制备. 热处理, 2015, 30(1): 11) [5] Yang R, Wang X J, Wu X P, et al. Progress in stir鄄casting process for fabricating SiCp / Al composites. Mater Rev, 2013, 27 (5): 131 (杨锐, 王筱峻, 吴星平, 等. 搅拌铸造制备 SiC 颗粒增强铝 基复合材料研究现状. 材料导报, 2013, 27(5): 131) [6] Jiang R P, Li X Q, Zhang L H, et al. Research on the solidifica鄄 tion structure refining laws of pure aluminum under different meth鄄 ods of ultrasonic vibration. J Mater Eng, 2009(2): 6 (蒋日鹏, 李晓谦, 张立华, 等. 超声施振方式对纯铝凝固组 织细化规律的研究. 材料工程, 2009(2): 6) [7] Pan L, Chen F, Wu S Q, et al. Review of MMC fabrication under high intensity ultrasonic treatment. Mater Mech Eng, 2003, 27 (7): 1 (潘蕾, 陈锋, 吴申庆, 等. 高能超声作用下金属基复合材料 的制备. 机械工程材料, 2003, 27(7): 1) [8] Ma J Y, Kang J W, Huang T Y. Novel application of ultrasonic cavitation for fabrication of TiN/ Al composites. J Alloys Compd, 2016, 661: 176 [9] Hong S, Wu Y P, Zhang J F, et al. Ultrasonic cavitation erosion of high鄄velocity oxygen鄄fuel (HVOF) sprayed near鄄nanostructured WC鄄鄄 10Co鄄鄄 4Cr coating in NaCl solution. Ultrason Sonochem, 2015, 26: 87 [10] Macwan A, Patel V K, Jiang X Q, et al. Ultrasonic spot welding of Al / Mg / Al tri鄄layered clad sheets. Mater Des, 2014, 62: 344 [11] Li F G, Yu S R. Research progress on interface of particle rein鄄 forced metal matrix composites. China Foundry Mach Technol, 2015(4): 43 (李凡国, 于思荣. 颗粒增强金属基复合材料界面研究进展. 中国铸造装备与技术, 2015(4): 43) [12] Ren J P, Song R G, Chen X M, et al. Development and states of heat鄄treatment process for 7xxx series aluminum alloys. Hot Work Technol, 2009, 38(6): 119 (任建平, 宋仁国, 陈小明, 等. 7xxx 系铝合金热处理工艺的 研究现状及进展. 热加工工艺, 2009, 38(6): 119) [13] Lee K B, Kwon H. Strength of Al鄄鄄Zn鄄鄄Mg鄄鄄Cu matrix composite reinforced with SiC particles. Metall Mater Trans A, 2002, 33 (2): 455 [14] Chen D X, Li X Q, Li Z H, et al. Microstructure and macro鄄 segregation law of ultrasonic cast 7050 aluminum alloy ingots. J Univ Sci Technol Beijing, 2012, 34(6): 666 (陈鼎欣, 李晓谦, 黎正华, 等. 超声铸造 7050 铝合金的微 观组织和宏观偏析规律. 北京科技大学学报, 2012, 34(6): 666) [15] Jiang R P, Li X Q, Liu R G, et al. Study on grain鄄refining mechanism of power ultrasound on pure aluminum and regional. Spec Cast Nonferrous Alloys, 2008, 28(7): 560 (蒋日鹏, 李晓谦, 刘荣光, 等. 功率超声对纯铝的细晶机制 及作用区域研究. 特种铸造及有色合金, 2008, 28 ( 7 ): 560) [16] Luo Z P. Crystallography of SiC/ MgAl2O4 / Al interfaces in a pre鄄oxidized SiC reinforced SiC/ Al composite. Acta Mater, 2006, 54(1): 47 [17] Fang X. Thoeretical Prediction of Interfacial Reaction and Work of Adhesion in SiC/ Al Composites [Dissertation]. Shanghai: Shang鄄 hai Jiao Tong University, 2013 (房鑫. SiC / Al 复合材料界面反应与粘着功理论预测研究 [学位论文]. 上海: 上海交通大学, 2013) [18] Liu J Y, Liu Y C, Liu G Q, et al. Oxidation behavior of silicon carbide particales and their interfacial characterization in alumi鄄 num matrix composites. Chin J Nonferrous Met, 2002, 12(5): 961 (刘俊友, 刘英才, 刘国权, 等. SiC 颗粒氧化行为及 SiCp / 铝基复合材料界面特征. 中国有色金属学报, 2002, 12(5): 961) ·243·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有