正在加载图片...
·882 工程科学学报,第42卷,第7期 参考文献 ultra-fine grained tungsten by resistance sintering under ultra-high [1]Han Y,Fan JL,Liu T,et al.The effect of trace nickel additive and pressure.Mater Sci Eng A,2009,505(1-2):131 [18]Zhou Z J,Pintsuk G,Linke J,et al.Transient high heat load tests ball milling treatment on the near-full densification behavior of on pure ultra-fine grained tungsten fabricated by resistance ultrafine tungsten powder.Int J Refract Met Hard Mater,2012,34: sintering under ultra-high pressure.Fusion Eng Des,2010,85(1): 18 115 [2]Li BQ.SunZQ,Hou GL et al.The sintering behavior of quasi- [19]Ding L,Xiang D P,Li YY,et al.Effects of sintering temperature spherical tungsten nanopowders.Int J Refract Met Hard Mater, on fine-grained tungsten heavy alloy produced by high-energy ball 2016,56:44 milling assisted spark plasma sintering.Int J Refract Met Hard [3]Kaufmann M,Neu R.Tungsten as first wall material in fusion Mater,2012,33:65 devices.Fusion Eng Des,2007,82(5-14):521 [20]Liu R,Zhou Y,Hao T,et al.Microwave synthesis and properties [4]Ren C,Fang ZZ,Zhang H,et al.The study on low temperature of fine-grained oxides dispersion strengthened tungsten.J Nucl sintering of nano-tungsten powders.IntJ Refract Met Hard Mater, Maer,2012,424(1-3):171 2016,61:273 [21]Kim Y,Lee K H,Kim E P,et al.Fabrication of high temperature [5]Kitsunai Y,Kurishita H,Kayano H,et al.Microstructure and oxides dispersion strengthened tungsten composites by spark impact properties of ultra-fine grained tungsten alloys dispersed plasma sintering process.Int J Refract Met Hard Mater,2009, with TiC.J Nucl Mater,1999,271-272:423 27(5):842 [6]Kurishita H,Amano Y,Kobayashi S,et al.Development of ultra- [22]Rieth M.Dafferner B.Limitations of W and W-1%La,O:for use fine grained W-TiC and their mechanical properties for fusion as structural materials.J Nucl Mater,2005,342(1-3):20 applications.J Nucl Mater,2007,367-370:1453 [23]Yar M A,Wahlberg S,Bergqvist H,et al.Chemically produced [7]Kecskes L J,Cho K C,Dowding R J,et al.Grain size engineering nanostructured ODS-lanthanum oxide-tungsten composites sinte- of bcc refractory metals:top-down and bottom-up-Application to red by spark plasma.J Nuc/Mater,2011,408(2):129 tungsten.Mater Sci Eng A,2007,467(1-2):33 [24]Yar M A,Wahlberg S,Bergqvist H,et al.Spark plasma sintering [8]Tan J,Zhou Z J.Qu DD.et al.Current status of the ultra-fine of tungsten-yttrium oxide composites from chemically synthesized grained tungsten and its alloys.Powder Metall Ind.2012.22(3) nanopowders and microstructural characterization.J Nucl Mater, 56 2011,412(2):227 (谈军,周张健,屈丹丹,等.超细品钨及其复合材料的研究现状 [25]Wesemann I,Spielmann W.Heel P,et al.Fracture strength and 粉末冶金工业,2012,22(3:56) microstructure of ODS tungsten alloys.IntJ Refract Met Hard [9]Ren C,Koopman M,Fang ZZ,et al.A study on the sintering of Ma1er,2010,28(6):687 ultrafine grained tungsten with Ti-based additives.InRefracr [26]Li B Q,Sun Z Q,Hou G L,et al.The effects of alumina Met Hard Mater,2017,65:2 reinforcement and nickel activated sintering on nanosized tungsten [10]Zhang S W,Wen Y,Zhang H J.Low temperature preparation of matrix.J Alloys Compd,2017,692:420 tungsten nanoparticles from molten salt.Powder Technol,2014. [27]Gaur R P S.Modem hydrometallurgical production methods for 253:464 tungsten.JOM,2006,58(9):45 [11]Ryu T,Sohn H Y,Hwang K S,et al.Chemical vapor synthesis [28]Sun G D,Zhang G H.Novel pathway to prepare Mo nanopowder (CVS)of tungsten nanopowder in a thermal plasma reactor.IntJ via hydrogen reduction of MoO,containing Mo nanoseeds Refract Met Hard Mater,2009,27(1):149 produced by reducing MoO:with carbon black.JOM,2019,72: [12]Ricceri R,Matteazzi P.A study of formation of nanometric W by 347 room temperature mechanosynthesis.J Alloys Compd,2003, [29]Sun G D,Wang K F,Song C M,et al.A low-cost,efficient,and 358(1-2):71 industrially feasible pathway for large scale preparation of [13]Ryu T,Hwang K S,Choi Y J,et al.The sintering behavior of tungsten nanopowders.Int J Refract Met Hard Mater,2019,78: nanosized tungsten powder prepared by a plasma process.IntJ 100 Refract Met Hard Mater,2009,27(4):701 [30]Wang D H,Sun G D,Zhang G H.Preparation of ultrafine Mo [14]Groza J R,Zavaliangos A.Sintering activation by external powders via carbothermic pre-reduction of molybdenum oxide and electrical field.Mater Sci Eng,2000,287(2):171 deep reduction by hydrogen.Int J Refract Met Hard Mater,2018 [15]Mondal A,Upadhyaya A,Agrawal D.Effect of heating mode on 75:70 sintering of tungsten.Int J Refract Met Hard Mater,2010,28(5): [31]Fang Z Z.Wang H T.Kumar V.Coarsening.densification,and 597 grain growth during sintering of nano-sized powders-a [16]Prabhu G,Chakraborty A,Sarma B.Microwave sintering of perspective.IntJRefract Met Hard Mater,2017,62:110 tungsten.Int J Refract Met Hard Mater,2009,27(3):545 [32]Kim Y,Hong M H,Lee S H,et al.The effect of yttrium oxide on [17]Zhou Z J,Ma Y,Du J,et al.Fabrication and characterization of the sintering behavior and hardness of tungsten.Met Mater Int,参    考    文    献 Han Y, Fan J L, Liu T, et al. The effect of trace nickel additive and ball milling treatment on the near-full densification behavior of ultrafine tungsten powder. Int J Refract Met Hard Mater, 2012, 34: 18 [1] Li B Q, Sun Z Q, Hou G L, et al. The sintering behavior of quasi￾spherical tungsten nanopowders. Int J Refract Met Hard Mater, 2016, 56: 44 [2] Kaufmann M, Neu R. Tungsten as first wall material in fusion devices. Fusion Eng Des, 2007, 82(5-14): 521 [3] Ren C, Fang Z Z, Zhang H, et al. The study on low temperature sintering of nano-tungsten powders. Int J Refract Met Hard Mater, 2016, 61: 273 [4] Kitsunai Y, Kurishita H, Kayano H, et al. Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC. J Nucl Mater, 1999, 271-272: 423 [5] Kurishita H, Amano Y, Kobayashi S, et al. Development of ultra￾fine grained W –TiC and their mechanical properties for fusion applications. J Nucl Mater, 2007, 367-370: 1453 [6] Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: top-down and bottom-up—Application to tungsten. Mater Sci Eng A, 2007, 467(1-2): 33 [7] Tan J, Zhou Z J, Qu D D, et al. Current status of the ultra-fine grained tungsten and its alloys. Powder Metall Ind, 2012, 22(3): 56 (谈军, 周张健, 屈丹丹, 等. 超细晶钨及其复合材料的研究现状. 粉末冶金工业, 2012, 22(3):56) [8] Ren C, Koopman M, Fang Z Z, et al. A study on the sintering of ultrafine grained tungsten with Ti-based additives. Int J Refract Met Hard Mater, 2017, 65: 2 [9] Zhang S W, Wen Y, Zhang H J. Low temperature preparation of tungsten nanoparticles from molten salt. Powder Technol, 2014, 253: 464 [10] Ryu T, Sohn H Y, Hwang K S, et al. Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. Int J Refract Met Hard Mater, 2009, 27(1): 149 [11] Ricceri R, Matteazzi P. A study of formation of nanometric W by room temperature mechanosynthesis. J Alloys Compd, 2003, 358(1-2): 71 [12] Ryu T, Hwang K S, Choi Y J, et al. The sintering behavior of nanosized tungsten powder prepared by a plasma process. Int J Refract Met Hard Mater, 2009, 27(4): 701 [13] Groza J R, Zavaliangos A. Sintering activation by external electrical field. Mater Sci Eng A, 2000, 287(2): 171 [14] Mondal A, Upadhyaya A, Agrawal D. Effect of heating mode on sintering of tungsten. Int J Refract Met Hard Mater, 2010, 28(5): 597 [15] Prabhu G, Chakraborty A, Sarma B. Microwave sintering of tungsten. Int J Refract Met Hard Mater, 2009, 27(3): 545 [16] [17] Zhou Z J, Ma Y, Du J, et al. Fabrication and characterization of ultra-fine grained tungsten by resistance sintering under ultra-high pressure. Mater Sci Eng A, 2009, 505(1-2): 131 Zhou Z J, Pintsuk G, Linke J, et al. Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure. Fusion Eng Des, 2010, 85(1): 115 [18] Ding L, Xiang D P, Li Y Y, et al. Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering. Int J Refract Met Hard Mater, 2012, 33: 65 [19] Liu R, Zhou Y, Hao T, et al. Microwave synthesis and properties of fine-grained oxides dispersion strengthened tungsten. J Nucl Mater, 2012, 424(1-3): 171 [20] Kim Y, Lee K H, Kim E P, et al. Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process. Int J Refract Met Hard Mater, 2009, 27(5): 842 [21] Rieth M, Dafferner B. Limitations of W and W−1%La2O3 for use as structural materials. J Nucl Mater, 2005, 342(1-3): 20 [22] Yar M A, Wahlberg S, Bergqvist H, et al. Chemically produced nanostructured ODS–lanthanum oxide–tungsten composites sinte￾red by spark plasma. J Nucl Mater, 2011, 408(2): 129 [23] Yar M A, Wahlberg S, Bergqvist H, et al. Spark plasma sintering of tungsten−yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization. J Nucl Mater, 2011, 412(2): 227 [24] Wesemann I, Spielmann W, Heel P, et al. Fracture strength and microstructure of ODS tungsten alloys. Int J Refract Met Hard Mater, 2010, 28(6): 687 [25] Li B Q, Sun Z Q, Hou G L, et al. The effects of alumina reinforcement and nickel activated sintering on nanosized tungsten matrix. J Alloys Compd, 2017, 692: 420 [26] Gaur R P S. Modern hydrometallurgical production methods for tungsten. JOM, 2006, 58(9): 45 [27] Sun G D, Zhang G H. Novel pathway to prepare Mo nanopowder via hydrogen reduction of MoO2 containing Mo nanoseeds produced by reducing MoO3 with carbon black. JOM, 2019, 72: 347 [28] Sun G D, Wang K F, Song C M, et al. A low-cost, efficient, and industrially feasible pathway for large scale preparation of tungsten nanopowders. Int J Refract Met Hard Mater, 2019, 78: 100 [29] Wang D H, Sun G D, Zhang G H. Preparation of ultrafine Mo powders via carbothermic pre-reduction of molybdenum oxide and deep reduction by hydrogen. Int J Refract Met Hard Mater, 2018, 75: 70 [30] Fang Z Z, Wang H T, Kumar V. Coarsening, densification, and grain growth during sintering of nano-sized powders —a perspective. Int J Refract Met Hard Mater, 2017, 62: 110 [31] Kim Y, Hong M H, Lee S H, et al. The effect of yttrium oxide on the sintering behavior and hardness of tungsten. Met Mater Int, [32] · 882 · 工程科学学报,第 42 卷,第 7 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有