正在加载图片...
第二十九讲Gren函数(二) 第3页 2. Green函数的对称性 先考察一下前面得到的解式 G(r; r)p()dr'-Eo//f(2)VG(r; r)ly,d2 这个结果在物理意义上有费解之处:在右端的体积分中,G(r;r)代表r处的单位 点电荷在r′处的电势,它乘上在观测点r处的电荷p(r)dr',并对观测点积分,却给 出r处的电势 对这个问题的回答要涉及到 Green函数的对称性.因为,如果像无界空间的 Green 函数那样,关系 G(r;r)=G(r;r) 成立的话,那么,上式就能改写成 ()=//G(:ryrdr-0//(xvr;r)yd 体积分的物理意义就一清二楚了.第二项的面积分当然就是来自边界面上的感生面 电荷的贡献 证明(#)式·和第十一章中的做法一样,再引进G(r;r"),它满足的定解问题当然就是 V2G(r;r")=--6(r-r"),r,r"∈V (;r")lx=0. 将两个方程分别乘以G(r;r")和G(r;r),相减,然后在区域V内积分,就得 G(r;")VG(r; r)-G(r; r)G(r; r)dr (r;r")6(-r)-G(r;r)(r-r")]dr 根据 Green公式,将上式左端的体积分化为面积分,就有 G(r;r")-G(r;,)=-Eo/[G(r; r")VG(r; r)-G( r")VG( r)].d3 代入边界条件,立即得出右端的面积分为0.这样就证明了 将r"改写为r,这就是(#)式 如果是第三类边界条件,上面的结论仍然正确 对于其他类型的稳定问题,它们的 Green函数是否仍然有对称关系(#),需要具体讨论Wu Chong-shi òóôõö Green ➶➹ (ó ) ➱ 3 ✃ 2. Green ✽✾❄÷øù úûü✬Ùý❜r❬✙⑨➧ u(r) = ZZ Z V 0 G(r 0 ; r)ρ(r 0 )dr 0 − ε0 ZZ Σ0 f(Σ 0 )∇0G(r 0 ; r) Σ0 · dΣ0 . ➀❒➟➠✱þÞÿ❾❯s￾⑨ ✣➑✰ ✱❮❰✙➤✁❲ ❫✥ G(r 0 ; r) ✂ ➥ r ➑ ✙➄❦ ✲ ❍❴✱ r 0 ➑ ✙ ❍②✥✫✄ ❯ ✱☎✆✲ r 0 ➑ ✙ ❍❴ ρ(r 0 )dr 0 ✥ á✺☎✆✲ ✁❲ ✥✝✞ ❐ r ➑ ✙ ❍② ✟ ✺ ➀❒✗✘✙ ✠✡★☛ ✹❬ Green ✚✛✙✺✻✮✼⑥✷✥➭➠☞❸❛❭❪✙ Green ✚✛✌ ➞ ✥✍✎➧ G(r 0 ; r) = G(r; r 0 ) (#) ✐✓✙✏ ✥✌✑✥ ❯➧✦✒✓❷✐ u(r) = ZZ Z V 0 G(r; r 0 )ρ(r 0 )dr 0 − ε0 ZZ Σ0 f(Σ 0 )∇0G(r; r 0 ) Σ0 · dΣ0 , ➤✁❲✙þÞÿ❾ ✦ ✬✔ æ✕ ✔✼◗æë✙❜✁❲❧❊ ✦❺▲ ✖❘❛❜❯✙❡❞❜ ❍❴✙✗✘✼ ✙✚ (#) ✛ ✼ ➅◗✜ ✬✢ ❫ ✙✣✤✬➞ ✥✥✦✧ G(r; r 00) ✥✫➻➼✙✖⑨✗✘❧❊ ✦❺ ∇2G(r; r 00) = − 1 ε0 δ(r − r 00), r, r 00 ∈ V, G(r; r 00) Σ = 0. ★ ➁❒❖P❲ ➐✄ ✸ G(r; r 00) ➅ G(r; r 0 ) ✥ ④✩ ✥ ❊ ✤✱èé V ❶ ✁❲ ✥✦r❬ Z ZZ V G(r; r 00)∇2G(r; r 0 ) − G(r; r 0 )∇2G(r; r 00) dr = − 1 ε0 Z ZZ V G(r; r 00)δ(r − r 0 ) − G(r; r 0 )δ(r − r 00) dr = − 1 ε0 G(r 0 ; r 00) − G(r 00; r 0 ) . ✪✫ Green ✬ ➧ ✥ ★❯➧✭ ❰ ✙➤✁❲✮✷❜✁❲ ✥✦s G(r 0 ; r 00) − G(r 00; r 0 ) = −ε0 ZZ Σ G(r; r 00)∇G(r; r 0 ) − G(r; r 0 )∇G(r; r 00) · dΣ. ✂ ①❘❛➙➛✥ ✓✯r❐ ❮❰✙❜✁❲✷ 0 ✼ ➀ ➞ ✦ ➯ ➲✔ G(r 0 ; r 00) = G(r 00; r 0 ), ★ r 00 ✓ ❷✷ r ✥➀✦❺ (#) ➧✼ ➭ ➠ ❺◗↔↕❘❛➙➛✥ ❯❜✙➟✪ ❉❊✰✱✼ ✺➣❹➨↕➩✙✕✖✗✘✥✫➳✙ Green ✚✛❺Ò❉❊s✺✻✍✎ (#) ✥✧★➢➤✩✪✼
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有