10 Htcbrom [R.Kallman.H.Kimura.J.Natkins.A.Pavlo,A.Rasin.S.B. MemSQL http://www.memsql..com A -n 、乙ain system.PVLDB1之ssor main memno go/sqlfire 177-187.19 [6 VolDB.vt The bw-iree 302-313.2013 27 ebrake migration mp- ased sgoberson.Elastic scale-out for partition-based database bas stributed database a2s281-288.2012 [29]C.N.Nikola .M.Mar dG.Georgiannakis urvey and re [11]C.Clark et al.Live migration of virtual machines.In NSD/. [30]NuoDB 273- 6.200 ein E Tam R Ran On-Der .Bench Serving Systems with YCSB. [3 10 latch-fr [13]J.Cowling and B.Liskoy.Gr verhead distributed coordination.In USENIX ATC.pages. 32 d S.Zdonik.Ske datal [14]C.Curino,Y.Zhang,E.P.C.Jones and S.Madden.Schism: [331 A.Pavlo.E.P.Jones and S.Zdonik.On [15 S.Das.S. aland A.E Abbadi or the C using Live Data Migration.PVLDB 00.2013 stems:the futur (35].Schiller N.Cipriani.and B.Mitsc nn.ACM. [17刀 er P-A.La on,P.Mittal. 36 er's 254.2 [37 tic and s Das D.Agr al.and A.El Abbadi.To em, and P.Helland The ctural Er nultitenant NetDB,2011 omplete Rewrite). 50-1160.2007 381R.1 aft,E.Man latforms.In S/GMOD.pages 301-312.2011. Fine-graned tran /web.archive /2011104120513/http:/b1og 3-butmer/ rmance Council.TPC-C S.Tu,W.Zheng.E.Kohler.B.Liskov,and S.Madden 198 core m-memory da 22 SOSP ga18-32,201 ass.and what 41A.hi y.D.Shasha 92.2008 S.Apter. Phase Commit.SQLr TS.197. Partitioned OLTP Databases.PhD thesis.MIT.2011. 10. REFERENCES [1] H-Store. http://hstore.cs.brown.edu. [2] MemSQL. http://www.memsql.com. [3] MongoDB. http://mongodb.org. [4] NuoDB. http://www.nuodb.com. [5] VMware vFabric SQLFire. http://www.vmware.com/go/sqlfire. [6] VoltDB. http://www.voltdb.com. [7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58, Apr. 2010. [8] S. K. Barker, Y. Chi, H. J. Moon, H. Hacigümüs, and P. J. Shenoy. "Cut me some slack": latency-aware live migration for databases. In EDBT, pages 432–443, 2012. [9] P. A. Bernstein and N. Goodman. Timestamp-based algorithms for concurrency control in distributed database systems. In VLDB, pages 285–300, 1980. [10] R. Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39:12–27, 2011. [11] C. Clark et al. Live migration of virtual machines. In NSDI, pages 273–286, 2005. [12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking Cloud Serving Systems with YCSB. In SoCC, pages 143–154, 2010. [13] J. Cowling and B. Liskov. Granola: low-overhead distributed transaction coordination. In USENIX ATC, pages 21–34, June 2012. [14] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism: a workload-driven approach to database replication and partitioning. PVLDB, 3(1):48–57, 2010. [15] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Albatross: Lightweight Elasticity in Shared Storage Databases for the Cloud using Live Data Migration. PVLDB, 4(8):494–505, May 2011. [16] D. DeWitt and J. Gray. Parallel database systems: the future of high performance database systems. Commun. ACM, 35(6):85–98, 1992. [17] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: Sql server’s memory-optimized oltp engine. In SIGMOD, pages 1243–1254, 2013. [18] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Towards an elastic and autonomic multitenant database. NetDB, 2011. [19] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr: Live Migration in Shared Nothing Databases for Elastic Cloud Platforms. In SIGMOD, pages 301–312, 2011. [20] N. Folkman. So, that was a bummer. https: //web.archive.org/web/20101104120513/http://blog. foursquare.com/2010/10/05/so-that-was-a-bummer/, October 2010. [21] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM Comput. Surv., 15(4):287–317, Dec. 1983. [22] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP through the looking glass, and what we found there. In SIGMOD, pages 981–992, 2008. [23] E. P. Jones. Fault-Tolerant Distributed Transactions for Partitioned OLTP Databases. PhD thesis, MIT, 2011. [24] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-store: a high-performance, distributed main memory transaction processing system. PVLDB, 1(2):1496–1499, 2008. [25] K. Li and J. F. Naughton. Multiprocessor main memory transaction processing. DPDS, pages 177–187, 1988. [26] D. B. Lomet, S. Sengupta, and J. J. Levandoski. The bw-tree: A b-tree for new hardware platforms. In ICDE, pages 302–313, 2013. [27] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main memory oltp recovery. In Data Engineering (ICDE), 2014 IEEE 30th International Conference on, pages 604–615, March 2014. [28] U. F. Minhas, R. Liu, A. Aboulnaga, K. Salem, J. Ng, and S. Robertson. Elastic scale-out for partition-based database systems. In ICDE Workshops, pages 281–288, 2012. [29] C. N. Nikolaou, M. Marazakis, and G. Georgiannakis. Transaction routing for distributed OLTP systems: survey and recent results. Inf. Sci., 97:45–82, 1997. [30] NuoDB LLC. NuoDB Emergent Architecture – A 21st Century Transactional Relational Database Founded On Partial, On-Demand Replication, Jan. 2013. [31] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. Plp: Page latch-free shared-everything oltp. In PVLDB, volume 4, pages 610–621, 2011. [32] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database partitioning in shared-nothing, parallel OLTP systems. In SIGMOD, pages 61–72, 2012. [33] A. Pavlo, E. P. Jones, and S. Zdonik. On predictive modeling for optimizing transaction execution in parallel oltp systems. Proc. VLDB Endow., 5:85–96, October 2011. [34] T. Rafiq. Elasca: Workload-aware elastic scalability for partition based database systems. Master’s thesis, University of Waterloo, 2013. [35] O. Schiller, N. Cipriani, and B. Mitschang. Prorea: live database migration for multi-tenant rdbms with snapshot isolation. In EDBT, pages 53–64, 2013. [36] R. Stoica, J. J. Levandoski, and P.-A. Larson. Identifying hot and cold data in main-memory databases. In ICDE, pages 26–37, 2013. [37] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. The End of an Architectural Era (It’s Time for a Complete Rewrite). In VLDB, pages 1150–1160, 2007. [38] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-store: Fine-grained elastic partitioning for distributed transaction processing. Proc. VLDB Endow., 8:245–256, November 2014. [39] The Transaction Processing Performance Council. TPC-C benchmark (Version 5.10.1), 2009. [40] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions in multicore in-memory databases. In SOSP, pages 18–32, 2013. [41] A. Whitney, D. Shasha, and S. Apter. High Volume Transaction Processing Without Concurrency Control, Two Phase Commit, SQL or C++. In HPTS, 1997