正在加载图片...
[21]Tang Q,Zhou Z,Shen PW.Are MXenes Promising Anode Materials for Li Ion Batteries?Computational Studies on Electronic Properties and Li Storage Capability of TiC2 and TiC2X2(X=F,OH)Monolayer.J. Am.Chem.Soc.,2012.134(40:16909 [22]Sun DD,Wang M S,Li M S,et al.Two-dimensional TiC2 as anode material for Li-ion batteries. Electrochem.Commun.,2014,47:80. 23]Xie Y,Naguib M,Mochalin V N,et al.Role of surface structure on Li-ion energy storage capacity of two- dimensional transition-metal carbides.J.Am.Chem.Soc.,2014,136(17):6385 [24]Ren C E,Zhao M Q,Makaryan T,et al.Porous Two-Dimensional Transition Metal Carbide (MXene)Flakes for High-Performance Li-Ion Storage.Chem.ElectroChem.,2016,3(5):689. [25]Lin Z Y,Sun D F,Huang Q,et al.Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries.J.Mater:Chem.A.,2015,3(27):14096. 126]Liu D R,Wang L B.He Y,et al.Enhanced Reversible Capacity and Cyclic Performance of Lithium-Ion Batteries Using SnO2 Interpenetrated MXene VC Architecture as Anode Materials,Energy Technol.,2021, 92):2000753. 27]Seok D,Shin W H,Kang S W,Sohn H.Piezoelectric composite of BaTiOcoated SnO2 microsphere:Li-ion battery anode with enhanced electrochemical performance based on accelerated Li'mobility.J.Alloys Compa.2021.870:159267. [28]Zhang C F,Kim S J,Ghidiu M.et al.Layered Orthorhombic Nb2Os@NbCTx and TiO2@Ti:C2T Hierarchical Composites for High Performance Li-ion Batteries.Ady.Funct.Mater:,2016,26(23):4143. [29]Zhao M Q,Torelli M,Ren C E,et al.2D titanium carbide and ansition metal oxides hybrid electrodes for Li-ion storage.Nano Energy,2016,30:603 [30]Ahmed B.Anjum D H.Gogotsi Y.Alshareef H N laver deposition of SnO,on MXene for Li-ion battery anodes.Nano Energy,2017,34:249. 31]Rakhi R B,Ahmed B,Hedhili M N,et al.Effect of Postetch Annealing Gas Composition on the Structural and Electrochemical Properties of TiCT MXene Electrodes for Supercapacitor Applications.Chem.Mater., 2015.27(15:5314. 32]Wu X H,Wang Z Y,Yu M Z et al.Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability.Adv Mater:, 2017:29(24) [33]Wang H.Feng H B,LiJ H.Graphene and Graphene-like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage.Small,2014,10(11):2165. 134]Jin J,Xiao T,Zhang Y F,et al.Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion.Nanoscale,2021,10.1039/d1nr05799e. 3均LiJa1 ,Li YQ,et al.MXene-decorated SnS/SnS hybrid as anode material for high-rate lithium-ion batteries hem.Eng.J,2020,380:122590. 136]Wang AN,Chen YX,Liu L,et al.Sulfur nanoparticles/Ti,C2T,MXene with an optimum sulfur content as a cathode for highly stable lithium-sulfur batteries.Dalton Trans.,2021,50(16):5574. [37]Feng K.,Li M,Liu WW,et al.Silicon-based anodes for lithium-ion batteries:from fundamentals to practical applications.Small,2018:14(8). [38]Casimir A.Zhang H G,Ogoke O,et al.Silicon-based anodes for lithium-ion batteries:effectiveness of materials synthesis and electrode preparation.Nano Energy,2016,27:359 39]Zhu X Q,Shen JL,Chen X F,et al.Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries.Chem.Eng.J.,2019:378.[21] Tang Q, Zhou Z, Shen PW. Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer. J. Am. Chem. Soc., 2012, 134(40): 16909. [22] Sun D D, Wang M S, Li M S, et al. Two-dimensional Ti 3C2 as anode material for Li-ion batteries. Electrochem. Commun., 2014, 47: 80. [23] Xie Y, Naguib M, Mochalin V N, et al. Role of surface structure on Li-ion energy storage capacity of two￾dimensional transition-metal carbides. J. Am. Chem. Soc., 2014, 136(17): 6385. [24] Ren C E, Zhao M Q, Makaryan T, et al. Porous Two-Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage. Chem. ElectroChem., 2016, 3(5): 689. [25] Lin Z Y, Sun D F, Huang Q, et al. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J. Mater. Chem. A., 2015, 3(27): 14096. [26] Liu D R, Wang L B, He Y, et al. Enhanced Reversible Capacity and Cyclic Performance of Lithium-Ion Batteries Using SnO2 Interpenetrated MXene V2C Architecture as Anode Materials. Energy Technol., 2021, 9(2): 2000753. [27] Seok D, Shin W H, Kang S W, Sohn H. Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility. J. Alloys Compd., 2021, 870: 159267. [28] Zhang C F, Kim S J, Ghidiu M, et al. Layered Orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx Hierarchical Composites for High Performance Li-ion Batteries. Adv. Funct. Mater., 2016, 26(23): 4143. [29] Zhao M Q, Torelli M, Ren C E, et al. 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy, 2016, 30: 603. [30] Ahmed B, Anjum D H, Gogotsi Y, Alshareef H N. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy, 2017, 34: 249. [31] Rakhi R B, Ahmed B, Hedhili M N, et al. Effect of Postetch Annealing Gas Composition on the Structural and Electrochemical Properties of Ti2CTx MXene Electrodes for Supercapacitor Applications. Chem. Mater., 2015, 27(15): 5314. [32] Wu X H, Wang Z Y, Yu M Z, et al. Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability. Adv. Mater., 2017: 29(24). [33] Wang H, Feng H B, Li J H. Graphene and Graphene-like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 2014, 10(11): 2165. [34] Jin J, Xiao T, Zhang Y F, et al. Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. Nanoscale, 2021, 10.1039/d1nr05799e. [35] Li J F, Han L, Li YQ, et al. MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chem. Eng. J., 2020, 380: 122590. [36] Wang A N, Chen Y X, Liu L, et al. Sulfur nanoparticles/Ti3C2Tx MXene with an optimum sulfur content as a cathode for highly stable lithium-sulfur batteries. Dalton Trans., 2021, 50(16): 5574. [37] Feng K., Li M, Liu W W, et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small, 2018: 14(8). [38] Casimir A, Zhang H G, Ogoke O, et al. Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation. Nano Energy, 2016, 27: 359. [39] Zhu X Q, Shen J L, Chen X F, et al. Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries. Chem. Eng. J., 2019:378. 录用稿件,非最终出版稿
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有