正在加载图片...
REVIEW ARTICLES IINSIGHT NATURE MATERIALS DOL:10.1038/NMAT2406 59.Sadan.M.B.et al.Toward atomic-scale bright-field electron tomography for 87.Merli,P.G..Missiroli,G.F.Pozzi,G.P-n junction observations by the study of fullerene-like nanostructures.Nano Lett.8,891-896(2008). interference electron microscopy.J.Microscopie 21,11-20(1974). 60.Jinschek,J.R.et al.3-D reconstruction of the atomic positions in a simulated 88.Frabboni,S.,Matteucci,G.Pozzi,G.Observation of electrostatic gold nanocrystal based on discrete tomography:prospects of atomic fields by electron holography:the case of reversed biased p-n junctions. resolution electron tomography.Ultramicroscopy 108,589-604(2008). Ultramicroscopy 23,29-38(1987). 61.Rodenburg.J.M.,Hurst,A.C.Cullis,A.G.Transmission microscopy without 89.Matteucci,G.,Missiroli,G.F.,Muccini,M.Pozzi,G.Electron holography lenses for objects of unlimited size.Ultramicroscopy 107,227-231 (2007). in the study of the electrostatic fields:the case of charged microtips. 62.Midgley,P.A.An introduction to electron holography.Micron 32,167-184(2001). Ultramicroscopy 45,77-83(1992). 63.Gabor,D.Microscopy by reconstructed wavefronts.Proc.R.Soc.Lond.A 90.Cumings,J.,Zettl,A.,McCartney,M.R.&Spence,I.C.H.Electron holography 197,454-487(1949). of field-emitting carbon nanotubes.Phrys.Rev.Lett.88,056804 (2002). 64.Jonsson,C.Elektroneninterferenzen an mehereren kunstlich hergestellten 91.Matsumoto,T.et al.Ferroelectric 90 domain structure in a thin film Feinspalten.Z Phys.A 161,454-474 (1961). of BaTiO,fine ceramics observed by 300 kV electron holography 65.Merli,P.G.,Missiroli,G.E.Pozzi,G.On the statistical aspect of electron Appl.Phs.Lett.92,072902(2008). interference phenomena.Am.J.Phys.44,306-307(1976). 92.Rau,W.D.,Schwander,P,Baumann,F.H.,Hoppner,W.Ourmazd,A. 66. Tonomura,A..Endo,J.,Matsuda,T.,Kawasaki,T.Ezawa,H.Demonstration Two-dimensional mapping of the electrostatic potential in transistors by of single-electron build-up of an interference pattern.Am.I.Phys. electron holography.Phys.Rev.Lett.82,2614-2617(1999). 57,117-120(1989). 93.Gribelyuk,M.A.et al.Mapping of electrostatic potential in deep submicron 67.Junginger,F.et al.Spin torque and heating effects in current-induced domain CMOS devices by electron holography.Phys.Rev.Lett.89,025502(2002). wall motion probed by high-resolution transmission electron microscopy. 94.Twitchett,A.C.,Dunin-Borkowski,R.E.Midgley,P.A.Quantitative Appl.Phs.Lett.90,132506(2007). electron holography of biased semiconductor devices.Phys.Rev.Lett. 68.Bromwich,T.I.et al.Remanent magnetic states and interactions in nano 88,238302(2002) pillars.Nanotechnology 17,4367-4373(2006) 95.Twitchett,A.C.Dunin-Borkowski,R.E.,Hallifax,R.J,Broom,R.F. 69.Volkl,E.,Allard,L.F.Joy,D.C.(eds)Introduction to Electron Holography Midgley,P.A.Off-axis electron holography of unbiased and reverse (Plenum,1998) biased focused ion beam milled Si p-n junctions.Microsc.Microanal 70.Mollenstedt,G.Duker,H.Fresnelscher Interferenzversuch mit einem 11,66-78(2005). Biprisma fur Elektronenwellen.Naturwissenschaften 42,41(1955). 96. Cooper,D.,Twitchett-Harrison.A.C.,Midgley,P.A.Dunin-Borkowski, 71.Orchowski,A.,Rau,W.D.Lichte,H.Electron holography surmounts R.E.The influence of electron irradiation on electron holography of focused resolution limit of electron microscopy.Phys.Rev.Lett.74,399-402 (1995). ion beam milled GaAs p-n junctions.I.Appl.Phys.101,094508(2007). 72.Tonomura,A.Electron Holography (Springer,1999). 97.Cooper,D.et al.Improvement in electron holographic phase images of 73.Osakabe,N.et al.Observation of recorded magnetization pattern by electron focused-ion-beam-milled GaAs and Si p-n junctions by in situ annealing. holography.Appl.Phys.Lett.42,746-748(1983). Appl.Phys.Let.88,063510(2006). 74.Hasegawa,S.et al.Magnetic-flux quanta in superconducting thin films 98.Beleggia,M.,Fazzini,P.F,Merli,P.G.Pozzi,G.Influence of charged observed by electron holography and digital phase analysis.Phys.Rev.B oxide layers on TEM imaging of reverse-biased p-njunctions.Phys.Rev.B 43,7631-7650(1991). 67,045328(2003). 75.Bonevich,J.E.et al.Electron holography observation of vortex lattices in a 99.Houben,L..Luysberg.M.Brammer,T.Illumination effects in holographic superconductor.Phys.Rev.Lett.70,2952-2955(1993). imaging of the electrostatic potential in semiconductors in transmission 76.Tonomura,A.et al.Evidence for Aharonov-Bohm effect with electron microscopy.Phys.Rev.B 70,165313 (2004). magnetic field completely shielded from electron wave.Phys.Rev.Lett. 100.Hytch,M.J.,Houdellier,E,Hue,F.Snoeck,E.Nanoscale holographic 56,792-795(1986 interferometry for strain measurements in electronic devices.Nature 77.Dunin-Borkowski,R.E.et al.Off-axis electron holography of magnetic 453、1086-1089(2008). nanowires and chains,rings and planar arrays of magnetic nanoparticles. 101.Twitchett-Harrison,A.C..Yates,T.J.V.,Newcomb,S.B.. Microsc.Res.Teh.64,390-402(2004). Dunin-Borkowski,R.E.Midgley,P.A.High-resolution three 78.Tripp,S.L.Dunin-Borkowski,R.E.Wei,A.Flux closure in self-assembled dimensional mapping of semiconductor dopant potentials.Nano Lett. cobalt nanoparticle rings.Angew.Chem.42,5591-5593(2003). 7,2020-2023(2007). 79.Harrison,R.J.,Dunin-Borkowski,R.E.&Putnis,A.Direct imaging of 102.Kasama,T.,Antypas,Y,Chong.R.K.K.&Dunin-Borkowski,R.E.in nanoscale magnetic interactions in minerals.Proc.Natl Acad.Sci.USA Electron Microscopy of Molecular and Atom-Scale Mechanical Behavior. 99、16556-16561(2002). Chemistry and Structure (eds Martin,D.C.,Muller,D.A.,Midgley,P.A. 80.Feinberg.J.M.et al Effects of internal mineral structures on the magnetic Stach,E.A.)P5.01 (Mater.Res.Soc.Proc.839,2005). remanence of silicate-hosted titanomagnetite inclusions:an electron 103.Phatak,C.,Beleggia,M.de Graef,M.Vector field electron tomography holography study.J.Geophys.Res.111,B12S15(2006). of magnetic materials:theoretical development.Ultramicroscopy 81.Dunin-Borkowski,R.E.et al Magnetic microstructure of magnetotactic 108,503-513(2008) bacteria by electron holography.Science 282,1868-1870(1998). 104.Lai,G.M.et al.3-dimensional reconstruction of magnetic vector-fields using 82.Kasama,T.et al.Magnetic properties,microstructure,composition and electron-holographic interferometry.I.Appl.Phys.75,4593-4598(1994). morphology of greigite nanocrystals in magnetotactic bacteria from electron 105.Lade,.Paganin,D.&Morgan,M..Electron tomography of electromagnetic holography and tomography.Am.Mineral.91,1216-1229 (2006). fields,potentials and sources.Opt.Commun.253,392-400(2005). 83.Loudon,J.C..Mathur,N.D.Midgley,P.A.Charge-ordered ferromagnetic phase in LaosCaosMnO3.Nature 420,797-800(2002) Acknowledgements 84.Murakami,Y.,Yoo,J.H.,Shindo,D.,Atou,T.Kikuchi,M.Magnetization We are grateful to many colleagues for contributions to the work presented distribution in the mixed-phase state of hole-doped manganites.Nature here,including M.Weyland,I.Arslan,T.J.V.Yates,M.H.Gass,E.P.W.Ward 423,965-968(2003). L.Laffont,K.Kaneko,J.S.Barnard,J.Sharp,J.R.Tong.J.-C.Hernandez, 85.Kasama.T.et al.Off-axis electron holography of pseudo-spin-valve thin film A.Hungria,J.M.Thomas,T.Kasama,A.C.Twitchett-Harrison,R.J.Harrison, magnetic elements.J.Appl.Phys.98,013903(2005). M.Posfai and M.R.McCartney.Financial support from the European Union 86.Hu,H.,Wang,H.,McCartney,M.R.Smith,D.J.Switching mechanisms and Framework 6 programme under a contract for an Integrated Infrastructure remanent states for nanoscale slotted Co circular elements studied by electron Initiative(Reference 026019 ESTEEM)is acknowledged.We are also grateful to the holography.Phys.Rev.B 73,153401 (2006). EPSRC,the Royal Society and RIKEN for financial support. 280 NATURE MATERIALS|VOL 8|APRIL 2009 www.nature.com/naturematerials 2009 Macmillan Publishers Limited.All rights reserved280 nature materials | VOL 8 | APRIL 2009 | www.nature.com/naturematerials review articles | insight NaTure maTerIals doi: 10.1038/nmat2406 59. Sadan, M. B. et al. Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. Nano Lett. 8, 891–896 (2008). 60. Jinschek, J. R. et al. 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: prospects of atomic resolution electron tomography. Ultramicroscopy 108, 589–604 (2008). 61. Rodenburg, J. M., Hurst, A. C. & Cullis, A. G. Transmission microscopy without lenses for objects of unlimited size. Ultramicroscopy 107, 227–231 (2007). 62. Midgley, P. A. An introduction to electron holography. Micron 32, 167–184 (2001). 63. Gabor, D. Microscopy by reconstructed wavefronts. Proc. R. Soc. Lond. A 197, 454–487 (1949). 64. Jönsson, C. Elektroneninterferenzen an mehereren künstlich hergestellten Feinspalten. Z. Phys. A 161, 454–474 (1961). 65. Merli, P. G., Missiroli, G. F. & Pozzi, G. On the statistical aspect of electron interference phenomena. Am. J. Phys. 44, 306–307 (1976). 66. Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T. & Ezawa, H. Demonstration of single-electron build-up of an interference pattern. Am. J. Phys. 57, 117–120 (1989). 67. Junginger, F. et al. Spin torque and heating effects in current-induced domain wall motion probed by high-resolution transmission electron microscopy. Appl. Phys. Lett. 90, 132506 (2007). 68. Bromwich, T. J. et al. Remanent magnetic states and interactions in nano￾pillars. Nanotechnology 17, 4367–4373 (2006). 69. Völkl, E., Allard, L. F. & Joy, D. C. (eds) Introduction to Electron Holography (Plenum, 1998). 70. Möllenstedt, G. & Düker, H. Fresnelscher Interferenzversuch mit einem Biprisma für Elektronenwellen. Naturwissenschaften 42, 41 (1955). 71. Orchowski, A., Rau, W. D. & Lichte, H. Electron holography surmounts resolution limit of electron microscopy. Phys. Rev. Lett. 74, 399–402 (1995). 72. Tonomura, A. Electron Holography (Springer, 1999). 73. Osakabe, N. et al. Observation of recorded magnetization pattern by electron holography. Appl. Phys. Lett. 42, 746–748 (1983). 74. Hasegawa, S. et al. Magnetic-flux quanta in superconducting thin films observed by electron holography and digital phase analysis. Phys. Rev. B 43, 7631–7650 (1991). 75. Bonevich, J. E. et al. Electron holography observation of vortex lattices in a superconductor. Phys. Rev. Lett. 70, 2952–2955 (1993). 76. Tonomura, A. et al. Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792–795 (1986). 77. Dunin-Borkowski, R. E. et al. Off-axis electron holography of magnetic nanowires and chains, rings and planar arrays of magnetic nanoparticles. Microsc. Res. Tech. 64, 390–402 (2004). 78. Tripp, S. L., Dunin-Borkowski, R. E. & Wei, A. Flux closure in self-assembled cobalt nanoparticle rings. Angew. Chem. 42, 5591–5593 (2003). 79. Harrison, R. J., Dunin-Borkowski, R. E. & Putnis, A. Direct imaging of nanoscale magnetic interactions in minerals. Proc. Natl Acad. Sci. USA 99, 16556–16561 (2002). 80. Feinberg, J. M. et al. Effects of internal mineral structures on the magnetic remanence of silicate-hosted titanomagnetite inclusions: an electron holography study. J. Geophys. Res. 111, B12S15 (2006). 81. Dunin-Borkowski, R. E. et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282, 1868–1870 (1998). 82. Kasama, T. et al. Magnetic properties, microstructure, composition and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am. Mineral. 91, 1216–1229 (2006). 83. Loudon, J. C., Mathur, N. D. & Midgley, P. A. Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3. Nature 420, 797–800 (2002). 84. Murakami, Y., Yoo, J. H., Shindo, D., Atou, T. & Kikuchi, M. Magnetization distribution in the mixed-phase state of hole-doped manganites. Nature 423, 965–968 (2003). 85. Kasama, T. et al. Off-axis electron holography of pseudo-spin-valve thin film magnetic elements. J. Appl. Phys. 98, 013903 (2005). 86. Hu, H., Wang, H., McCartney, M. R. & Smith, D. J. Switching mechanisms and remanent states for nanoscale slotted Co circular elements studied by electron holography. Phys. Rev. B 73, 153401 (2006). 87. Merli, P. G., Missiroli, G. F. & Pozzi, G. P–n junction observations by interference electron microscopy. J. Microscopie 21, 11–20 (1974). 88. Frabboni, S., Matteucci, G. & Pozzi, G. Observation of electrostatic fields by electron holography: the case of reversed biased p–n junctions. Ultramicroscopy 23, 29–38 (1987). 89. Matteucci, G., Missiroli, G. F., Muccini, M. & Pozzi, G. Electron holography in the study of the electrostatic fields: the case of charged microtips. Ultramicroscopy 45, 77–83 (1992). 90. Cumings, J., Zettl, A., McCartney, M. R. & Spence, J. C. H. Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 056804 (2002). 91. Matsumoto, T. et al. Ferroelectric 90° domain structure in a thin film of BaTiO3 fine ceramics observed by 300 kV electron holography. Appl. Phys. Lett. 92, 072902 (2008). 92. Rau, W. D., Schwander, P., Baumann, F. H., Höppner, W. & Ourmazd, A. Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys. Rev. Lett. 82, 2614–2617 (1999). 93. Gribelyuk, M. A. et al. Mapping of electrostatic potential in deep submicron CMOS devices by electron holography. Phys. Rev. Lett. 89, 025502 (2002). 94. Twitchett, A. C., Dunin-Borkowski, R. E. & Midgley, P. A. Quantitative electron holography of biased semiconductor devices. Phys. Rev. Lett. 88, 238302 (2002). 95. Twitchett, A. C., Dunin-Borkowski, R. E., Hallifax, R. J., Broom, R. F. & Midgley, P. A. Off-axis electron holography of unbiased and reverse￾biased focused ion beam milled Si p-n junctions. Microsc. Microanal. 11, 66–78 (2005). 96. Cooper, D., Twitchett-Harrison, A. C., Midgley, P. A. & Dunin-Borkowski, R. E. The influence of electron irradiation on electron holography of focused ion beam milled GaAs p-n junctions. J. Appl. Phys. 101, 094508 (2007). 97. Cooper, D. et al. Improvement in electron holographic phase images of focused-ion-beam-milled GaAs and Si p-n junctions by in situ annealing. Appl. Phys. Lett. 88, 063510 (2006). 98. Beleggia, M., Fazzini, P. F., Merli, P. G. & Pozzi, G. Influence of charged oxide layers on TEM imaging of reverse-biased p-n junctions. Phys. Rev. B 67, 045328 (2003). 99. Houben, L., Luysberg, M. & Brammer, T. Illumination effects in holographic imaging of the electrostatic potential in semiconductors in transmission electron microscopy. Phys. Rev. B 70, 165313 (2004). 100. Hÿtch, M. J., Houdellier, F., Hüe, F. & Snoeck, E. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086–1089 (2008). 101. Twitchett-Harrison, A. C., Yates, T. J. V., Newcomb, S. B., Dunin-Borkowski, R. E. & Midgley, P. A. High-resolution three￾dimensional mapping of semiconductor dopant potentials. Nano Lett. 7, 2020–2023 (2007). 102. Kasama, T., Antypas, Y., Chong, R. K. K. & Dunin-Borkowski, R. E. in Electron Microscopy of Molecular and Atom-Scale Mechanical Behavior, Chemistry and Structure (eds Martin, D. C., Muller, D. A., Midgley, P. A. & Stach, E. A.) P5.01 (Mater. Res. Soc. Proc. 839, 2005). 103. Phatak, C., Beleggia, M. & de Graef, M. Vector field electron tomography of magnetic materials: theoretical development. Ultramicroscopy 108, 503–513 (2008). 104. Lai, G. M. et al. 3-dimensional reconstruction of magnetic vector-fields using electron-holographic interferometry. J. Appl. Phys. 75, 4593–4598 (1994). 105. Lade, S. J., Paganin, D. & Morgan, M. J. Electron tomography of electromagnetic fields, potentials and sources. Opt. Commun. 253, 392–400 (2005). acknowledgements We are grateful to many colleagues for contributions to the work presented here, including M. Weyland, I. Arslan, T. J. V. Yates, M. H. Gass, E. P. W. Ward, L. Laffont, K. Kaneko, J. S. Barnard, J. Sharp, J. R. Tong, J.-C. Hernandez, A. Hungria, J. M. Thomas, T. Kasama, A. C. Twitchett-Harrison, R. J. Harrison, M. Pósfai and M. R. McCartney. Financial support from the European Union Framework 6 programme under a contract for an Integrated Infrastructure Initiative (Reference 026019 ESTEEM) is acknowledged. We are also grateful to the EPSRC, the Royal Society and RIKEN for financial support. nmat_2406_APR09.indd 280 13/3/09 12:08:36 © 2009 Macmillan Publishers Limited. All rights reserved
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有