正在加载图片...
NATURE MATERIALS DOL:10.1038/NMAT2406 INSIGHT I REVIEW ARTICLES under applied bias or during mechanical deformation.Although 30.Tong,I.R..Arslan,I.Midgley,P.A.A novel dual-axis iterative algorithm for the need to acquire multiple images still limits their application to electron tomography.J.Struct.Biol.153,55-63(2006). truly dynamic studies,advances in both techniques are leading to 31.Koguchi,M.et al.Three-dimensional STEM for observing nanostructures the development of a true laboratory in the electron microscope. I.Electron Microsc.50,235-241 (2001). 32.Arslan,I,Marquis,E.A.,Homer,M.,Hekmaty,M.A.Bartelt,N.C. Towards better 3-D reconstructions by combining electron tomography and References atom-probe tomography.Ultramicroscopy 108,1579-1585(2008). 1.Muller,D.A.Structure and bonding at the atomic scale by scanning 33.Midgley,P.A.Weyland,M.3D electron microscopy in the physical sciences: transmission electron microscopy.Nature Mater.8,263-270(2009) the development of Z-contrast and EFTEM tomography.Ultramicroscopy 2. Urban,K.W.Is science prepared for atomic-resolution microscopy? 96.413-431(2003). Nature Mater.8.260-262(2009) 34.Midgley,P.A.,Weyland,M.,Thomas,J.M.Johnson,B.F.G.Z-Contrast 3. Radon,J.Uber die Bestimmung von Funktionen durch ihre Integralwerte tomography:a technique in three-dimensional nanostructural analysis based langs gewisser Mannigfaltigkeiten.Ber.Verh.K.Sachs.Ges.Wiss.Leipzig on Rutherford scattering.Chem.Commimn.10,907-908(2001). Math-Phys.K169,262-277(1917). 35.Thomas,J.M.et al.The chemical application of high-resolution 4. Cormack,A.M.Representation of a function by its line integrals with some electron tomography:bright field or dark field?Angew.Chem.Int.Ed radiological applications.J.Appl Phys.34,2722-2727(1963). 43.6745-6747(2004). 5. Hounsfield,G.N.A method of and apparatus for examination of a body by 36.Ward,E.P.W.,Yates,T.J.V.,Fernandez,J.-J.,Vaughan,D.E.W.& radiation such as X or gamma radiation.UK patent 1,283,915(1972). Midgley,P.A.Three-dimensional nanoparticle distribution and local 6. De Rosier,D.J.Klug,A.Reconstruction of three dimensional structures curvature of heterogeneous catalysts revealed by electron tomography from electron micrographs.Nature 217,130-134(1968). I.Phs.Chem.C111,11501-11505(2007). 7. Hoppe,W.Langer,R Knesch,G.&Poppe,C.Protein-kristallstrukturanalyse 37. Weyland,M.Yates,T.J.V.,Dunin-Borkowski,R.E..Laffont,L.Midgley,P.A mit Elektronenstrahlen.Naturwissenschaften 55,333-336(1968). Nanoscale analysis of three-dimensional structures by electron tomography. 8. Hart,R.G.Electron microscopy of unstained biological material:the Scripta Mater.55,29-33(2006). polytropic montage.Science 159,1464-1467 (1968). 38.Buseck,P.R.et al.Magnetite morphology and life on Mars. 9. Unwin,P.N.T.Henderson,R.Molecular structure determination by electron Proc.Natl Acad.Sci.USA 98,13490-13495 (2001). microscopy of unstained crystalline specimens.I.Mol.Biol.94,425-440(1975) 39.De Jong,K.P.Koster,A.J.Three-dimensional electron microscopy 10.Frank,J.Three-Dimensional Electron Microscopy of Macromolecular Assemblies of mesoporous materials-recent strides towards spatial imaging at the (Academic,1996). nanometer scale.ChemPhysChem 3,776-780(2002). 11.Baumeister,W.,Grimm,R.Walz,J.Electron tomography of molecules and 40.Yates,T.I.V.et al.Three-dimensional real-space crystallography of MCM-48 cells.Trends Cell Biol.9,81-85(1999). mesoporous silica revealed by scanning transmission electron tomography. 12.Chao,W.Hartneck,B.D.,Liddle,J.A.,Anderson,E.H.Attwood,D.T. Chem.P%hs.Lett.418,540-543(2006). Soft X-ray microscopy at a spatial resolution better than 15nm.Nature 41.Kaneko,K.et al.TEM characterization of Ge precipitates in an Al-1.6 at%Ge 435,1210-1213(2005). alloy.Ultramicroscopy 108,210-220 (2008). 13.Chapman,H.N.et al.High-resolution ab initio three-dimensional X-ray 42.Porter,A.E.etal.Direct imaging of single-walled carbon nanotubes in human diffraction microscopy.J.Opt.Soc.Am.A 23,1179-1200 (2006). cells.Nature Nanotechnol.2,713-717 (2007). 14.Magerle,R.Nanotomography.Phys.Rev.Lett.85,2749-2752(2000). 43.Midgley,P.A.,Weyland,M.Stegmann,H.in Advanced Tomographic 15.Cerezo,A.,Godfrey,T.J.Smith,G.D.W.Application of a position-sensitive Methods in Materials Research and Engineering (ed.Banhart,J.)335-373 detector to atom probe microanalysis.Rev.Sci.Instrum.59,862-866(1988). (Oxford Univ.Press,2008). 16.Inkson,B.J.,Mulvihill,M.Mobus,G.3D determination of grain shape 44.Bals,S.,Batenburg.K.J.,Verbeeck,I,Sijbers,I.van Tendeloo,G. in a FeAl-based nanocomposite by 3D FIB tomography.Scripta Mater. Quantitative three-dimensional reconstruction of catalyst particles for 45,753-758(2001). bamboo-like carbon nanotubes.Nano Lett.7,3669-3674 (2007) 17.Schaffer,M.,Wagner,J.,Schaffer,B.,Schmied,M.Mulders,H.Automated 45.Kubel,C.et al.Recent advances in electron tomography:TEM and three-dimensional X-ray analysis using a dual-beam FIB.Ultramicroscopy HAADF-STEM tomography for materials science and semiconductor 107,587-597(2007). applications.Microsc.Microanal 11,378-400(2005). 18.Konrad,I,Zaefferer,S.Raabe,D.Investigation of orientation gradients 46.Ercius,P.Weyland,M.,Muller,D.A.Gignac,L.M.Three-dimensional around a hard Laves particle in a warm-rolled Fe,Al-based alloy using a 3D imaging of nanovoids in copper interconnects using incoherent bright field EBSD-FIB technique.Acta Math.54,1369-1380 (2006). tomography.Appl Phys.Lett.88,243116(2006). 19.Uchic,M.D.,Groeber,M.A.,Dimiduk,D.M.Simmons,J.P.3D 47.Jeanguillaume,C.Colliex,C.Spectrum-image:the next step in EELS digital microstructural characterization of nickel superalloys via serial-sectioning acquisition and processing.Ultramicroscopy 28,252-257(1989). using a dual beam FIB-SEM.Scripta Mater.55,23-28(2006) 48.Lavergne,J.L,Martin,J.M.Belin,M.interactive electron- 20.Spontak,R.I,Williams,M.C.Agard,D.A.Three-dimensional study of energy-loss elemental mapping by the imaging-spectrum method. cylindrical morphology in a styrene-butadiene-styrene block copolymer. Microsc.Microanal.Microstruct.3,517-528(1992). Polymer29,387-395(1988). 49.Thomas,P.&Midgley,P.A.Image-spectroscopy-I.The advantages 21.Koster,A.I,Ziese,U.,Verkleij.A.I.,Janssen,A.H.de Jong.K.P. of increased spectral information for compositional EFTEM analysis. Three-dimensional electron microscopy:a novel imaging and characterization Ultramicroscopy 88,179-186(2001). technique with nanometer scale resolution for materials science. 50.Mobus,G.Inkson,B.J.Three-dimensional reconstruction of buried LPh1ys.Che1.B104,9368-9370(2000). nanoparticles by element-sensitive tomography based on inelastically scattered 22. Hawkes,P.W.The Electron Microscope as a Structure Projector in Electron electrons.Appl Phys.Lett.79,1369-1371 (2001) Tomography:Three-Dimensional Imaging with the Transmission Electron 51.Weyland,M.&Midgley,P.A.Extending energy-filtered transmission electron Microscope (ed.Frank,J.)17-39(Plenum,1992). microscopy (EFTEM)into three dimensions using electron tomography. 23.Crowther,R.A.,de Rosier,D.J.Klug.A.The reconstruction of a Microsc.Microanal.9,542-555(2003). three-dimensional structure from projections and its application to electron 52.Yurtsever,A.,Weyland,M.Muller,D.A.Three-dimensional imaging of microscopy.Proc.R.Soc.Lond.A 319,317-340 (1970). nonspherical silicon nanoparticles embedded in silicon oxide by plasmon 24.Radermacher,M.Weighted Back-Projection Methods in Electron Tomography tomography.Appl Phys.Lett.89,151920(2006). 2nd edn (ed.Frank,J.)245-274 (Springer,2006). 53.Gass,M.H.,Koziol,K.K.K.,Windle,A.H.Midgley,P.A.4-dimensional 25.Gilbert,P.Iterative methods for the three-dimensional reconstruction of an spectral-tomography of carbonaceous nano-composites.Nano Lett. object from projections.I.Theor.BioL 36,105-117 (1972). 6、376-379(2006). 26.Batenburg,K.J.Sijbers,J.in Proc.IEEE Conf.Image Processing 54.Mobus,G.Doole,R.C.Inkson,B.J.Spectroscopic electron tomography Vol.4.133-136(IEEE,2007). Ultramicroscopy 96,433-451(2003). 27.Batenburg,K.J.Network Flow Algorithms for Discrete Tomography.Ph.D. 55.Yaguchi,T.et al.Elemental mapping using a dedicated FIB/STEM system. thesis,Univ.Leiden;<http://visielab.ua.ac.be/staft/batenburg/papers/ Microsc.Microanal.10 (suppl.2),1030-1031 (2004). ba_phdthesis 2006.pdf>(2006). 56.Barnard,J.S.,Sharp,J.,Tong.J.R.Midgley,P.A.High-resolution 28.Kawase,N.,Kato,M.,Nishioka,H.Jinnai,H.Transmission electron three-dimensional imaging of dislocations.Science 303,319 (2006). microtomography without the "missing wedge"for quantitative structural 57.Hata,S.etal Electron tomography imaging and analysis ofy and y domains analysis.Ultramicroscopy 107,8-15(2007). in Ni-based superalloys.Adv.Mater.20,1905-1909 (2008). 29.Arslan,L,Tong.J.R.Midgley,P.A.Reducing the missing wedge: 58.Sharp,I.H,Barnard,J.S.,Kaneko,K.,Higashida,K.Midgley,P.A.Dislocation high-resolution dial axis tomography of inorganic materials.Ultramicroscopy tomography made easy:a reconstruction from ADF STEM images obtained 106.994-1000(2006. using automated image shift correction.I.Phrys.Conf.Ser.126,012013(2008). NATURE MATERIALS VOL 8|APRIL 2009 www.nature.com/naturematerials 279 2009 Macmillan Publishers Limited.All rights reservednature materials | VOL 8 | APRIL 2009 | www.nature.com/naturematerials 279 NaTure maTerIals doi: 10.1038/nmat2406 insight | review articles under applied bias or during mechanical deformation. Although the need to acquire multiple images still limits their application to truly dynamic studies, advances in both techniques are leading to the development of a true laboratory in the electron microscope. references 1. Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Mater. 8, 263–270 (2009). 2. Urban, K. W. Is science prepared for atomic-resolution microscopy? Nature Mater. 8, 260–262 (2009). 3. Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten. Ber. Verh. K. Sachs. Ges. Wiss. Leipzig Math.-Phys. Kl. 69, 262–277 (1917). . 4. Cormack, A. M. Representation of a function by its line integrals with some radiological applications. J. Appl. Phys. 34, 2722–2727 (1963). 5. Hounsfield, G. N. A method of and apparatus for examination of a body by radiation such as X or gamma radiation. UK patent 1,283,915 (1972). 6. De Rosier, D. J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968). 7. Hoppe, W., Langer, R., Knesch, G. & Poppe, C. Protein-kristallstrukturanalyse mit Elektronenstrahlen. Naturwissenschaften 55, 333–336 (1968). 8. Hart, R. G. Electron microscopy of unstained biological material: the polytropic montage. Science 159, 1464–1467 (1968). 9. Unwin, P. N. T. & Henderson, R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–440 (1975). 10. Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Academic, 1996). 11. Baumeister, W., Grimm, R. & Walz, J. Electron tomography of molecules and cells. Trends Cell Biol. 9, 81–85 (1999). 12. Chao, W., Hartneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15nm. Nature 435, 1210–1213 (2005). 13. Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006). 14. Magerle, R. Nanotomography. Phys. Rev. Lett. 85, 2749–2752 (2000). 15. Cerezo, A., Godfrey, T. J. & Smith, G. D. W. Application of a position-sensitive detector to atom probe microanalysis. Rev. Sci. Instrum. 59, 862–866 (1988). 16. Inkson, B. J., Mulvihill, M. & Möbus, G. 3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scripta Mater. 45, 753–758 (2001). 17. Schaffer, M., Wagner, J., Schaffer, B., Schmied, M. & Mulders, H. Automated three-dimensional X-ray analysis using a dual-beam FIB. Ultramicroscopy 107, 587–597 (2007). 18. Konrad, J., Zaefferer, S. & Raabe, D. Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Math. 54, 1369–1380 (2006). 19. Uchic, M. D., Groeber, M. A., Dimiduk, D. M. & Simmons, J. P. 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scripta Mater. 55, 23–28 (2006). 20. Spontak, R. J., Williams, M. C. & Agard, D. A. Three-dimensional study of cylindrical morphology in a styrene–butadiene–styrene block copolymer. Polymer 29, 387–395 (1988). 21. Koster, A. J., Ziese, U., Verkleij, A. J., Janssen, A. H. & de Jong, K. P. Three-dimensional electron microscopy: a novel imaging and characterization technique with nanometer scale resolution for materials science. J. Phys. Chem. B 104, 9368–9370 (2000). 22. Hawkes, P. W. The Electron Microscope as a Structure Projector in Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope (ed. Frank, J.) 17–39 (Plenum, 1992). 23. Crowther, R. A., de Rosier, D. J. & Klug, A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. A 319, 317–340 (1970). 24. Radermacher, M. Weighted Back-Projection Methods in Electron Tomography 2nd edn (ed. Frank, J.) 245–274 (Springer , 2006). 25. Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972). 26. Batenburg, K. J. & Sijbers, J. in Proc. IEEE Conf. Image Processing Vol. 4, 133–136 (IEEE, 2007). 27. Batenburg, K. J. Network Flow Algorithms for Discrete Tomography. Ph.D. thesis, Univ. Leiden; <http://visielab.ua.ac.be/staff/batenburg/papers/ ba_phdthesis_2006.pdf> (2006). 28. Kawase, N., Kato, M., Nishioka, H. & Jinnai, H. Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. Ultramicroscopy 107, 8–15 (2007). 29. Arslan, I., Tong, J. R. & Midgley, P. A. Reducing the missing wedge: high-resolution dial axis tomography of inorganic materials. Ultramicroscopy 106, 994–1000 (2006). 30. Tong, J. R., Arslan, I. & Midgley, P. A. A novel dual-axis iterative algorithm for electron tomography. J. Struct. Biol. 153, 55–63 (2006). 31. Koguchi, M. et al. Three-dimensional STEM for observing nanostructures. J. Electron Microsc. 50, 235–241 (2001). 32. Arslan, I., Marquis, E. A., Homer, M., Hekmaty, M. A. & Bartelt, N. C. Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 1579–1585 (2008). 33. Midgley, P. A. & Weyland, M. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413–431 (2003). 34. Midgley, P. A., Weyland, M., Thomas, J. M. & Johnson, B. F. G. Z-Contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem. Commun. 10, 907–908 (2001). 35. Thomas, J. M. et al. The chemical application of high-resolution electron tomography: bright field or dark field? Angew. Chem. Int. Ed. 43, 6745–6747 (2004). 36. Ward, E. P. W., Yates, T. J. V., Fernández, J.-J., Vaughan, D. E. W. & Midgley, P. A. Three-dimensional nanoparticle distribution and local curvature of heterogeneous catalysts revealed by electron tomography. J. Phys. Chem. C 111, 11501–11505 (2007). 37. Weyland, M., Yates, T. J. V., Dunin-Borkowski, R. E., Laffont, L. & Midgley, P. A. Nanoscale analysis of three-dimensional structures by electron tomography. Scripta Mater. 55, 29–33 (2006). 38. Buseck, P. R. et al. Magnetite morphology and life on Mars. Proc. Natl Acad. Sci. USA 98, 13490–13495 (2001). 39. De Jong, K. P. & Koster, A. J. Three-dimensional electron microscopy of mesoporous materials - recent strides towards spatial imaging at the nanometer scale. ChemPhysChem 3, 776–780 (2002). 40. Yates, T. J. V. et al. Three-dimensional real-space crystallography of MCM-48 mesoporous silica revealed by scanning transmission electron tomography. Chem. Phys. Lett. 418, 540–543 (2006). 41. Kaneko, K. et al. TEM characterization of Ge precipitates in an Al–1.6 at% Ge alloy. Ultramicroscopy 108, 210–220 (2008). 42. Porter, A. E. et al. Direct imaging of single-walled carbon nanotubes in human cells. Nature Nanotechnol. 2, 713–717 (2007). 43. Midgley, P. A., Weyland, M. & Stegmann, H. in Advanced Tomographic Methods in Materials Research and Engineering (ed. Banhart, J.) 335–373 (Oxford Univ. Press, 2008). 44. Bals, S., Batenburg, K. J., Verbeeck, J., Sijbers, J. & van Tendeloo, G. Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes. Nano Lett. 7, 3669–3674 (2007). 45. Kubel, C. et al. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 11, 378–400 (2005). 46. Ercius, P., Weyland, M., Muller, D. A. & Gignac, L. M. Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl. Phys. Lett. 88, 243116 (2006). 47. Jeanguillaume, C. & Colliex, C. Spectrum-image: the next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252–257 (1989). 48. Lavergne, J. L., Martin, J. M. & Belin, M. interactive electron￾energy-loss elemental mapping by the imaging-spectrum method. Microsc. Microanal. Microstruct. 3, 517–528 (1992). 49. Thomas, P. J. & Midgley, P. A. Image-spectroscopy - I. The advantages of increased spectral information for compositional EFTEM analysis. Ultramicroscopy 88, 179–186 (2001). 50. Mobus, G. & Inkson, B. J. Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl. Phys. Lett. 79, 1369–1371 (2001). 51. Weyland, M. & Midgley, P. A. Extending energy-filtered transmission electron microscopy (EFTEM) into three dimensions using electron tomography. Microsc. Microanal. 9, 542–555 (2003). 52. Yurtsever, A., Weyland, M. & Muller, D. A. Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography. Appl. Phys. Lett. 89, 151920 (2006). 53. Gass, M. H., Koziol, K. K. K., Windle, A. H. & Midgley, P. A. 4-dimensional spectral-tomography of carbonaceous nano-composites. Nano Lett. 6, 376–379 (2006). 54. Mobus, G., Doole, R. C. & Inkson, B. J. Spectroscopic electron tomography. Ultramicroscopy 96, 433–451 (2003). 55. Yaguchi, T. et al. Elemental mapping using a dedicated FIB/STEM system. Microsc. Microanal. 10 (suppl. 2), 1030–1031 (2004). 56. Barnard, J. S., Sharp, J., Tong, J. R. & Midgley, P. A. High-resolution three-dimensional imaging of dislocations. Science 303, 319 (2006). 57. Hata, S. et al. Electron tomography imaging and analysis of γ′ and γ domains in Ni-based superalloys. Adv. Mater. 20, 1905–1909 (2008). 58. Sharp, J. H., Barnard, J. S., Kaneko, K., Higashida, K. & Midgley, P. A. Dislocation tomography made easy: a reconstruction from ADF STEM images obtained using automated image shift correction. J. Phys. Conf. Ser. 126, 012013 (2008). nmat_2406_APR09.indd 279 13/3/09 12:08:35 © 2009 Macmillan Publishers Limited. All rights reserved
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有