正在加载图片...
黄浩等:高嫡合金与非晶合金柔性材料 127· 优劣,因此要实现柔性电子设备的实际应用关键 [8]Yeh J W.Chen S K.Lin S J,et al.Nanostructured high-entropy 之一在于新型柔性材料的研发上,高嫡合金一直 alloys with multiple principal elements:novel alloy design 是材料领域研究的热点,传统方法获得的块体高 concepts and outcomes.Ady Eng Mater,2004,6(5):299 [9]Cantor B,Chang I T H,Knight P,et al.Microstructural 熵合金虽然具有独特的综合性能优势,但却无法 development in equiatomic multicomponent alloys.Mater Sci Eng 满足作为柔性材料的可变形要求,通过一定的工 4,2004,375-377:213 艺技术制备的高熵合金纤维或高嫡合金薄膜已被 [10]Zhang W R,Liaw P K,Zhang Y.Science and technology in high- 证明表现出不亚于块体高嫡合金的性能,并能够 entropy alloys.Sci China-Mater,2018,61(1):2 有效降低材料尺寸,赋予材料良好的机械灵活性, [11]Salishchev G A,Tikhonovsky M A,Shaysultanov D G,et al. 是潜在的柔性电子候选材料.非晶合金具有高的 Effect of Mn and V on structure and mechanical properties of 弹性极限、优异的力学及物理性能,因此也被应用 high-entropy alloys based on CoCrFeNi system.JAlloys Compd, 2014.591:11 于柔性电子器件的构建中,在可穿戴式的电子皮 [12]Ma S G,Zhang S F,Qiao J W,et al.Superior high tensile 肤传感器、柔性导电电极、柔性超级电容器等方 elongation of a single-crystal CoCrFeNiAlo;high-entropy alloy by 面已有出色表现,还可通过一定的几何结构设计 Bridgman solidification.Intermetallics,2014,54:104 如弹簧结构、褶皱结构等进一步改善其机械柔性 [13]Li D Y,Zhang Y.The ultrahigh charpy impact toughness of forged 虽然高熵合金与非晶合金均展现出在柔性电 Al,CoCrFeNi high entropy alloys at room and cryogenic 子领域的巨大应用前景,但目前关于高嫡合金和 temperatures.Intermetallics,2016,70:24 [14]Klement W,Willens R H,Duwez P.Non-crystalline structure in 非晶合金柔性材料的研究仍处在初级阶段,研究 solidified gold-silicon alloys.Nature,1960,187(4740):869 成果相对较少,仍需针对柔性电子领域的需求对 [15]Hui X D,Lv K,Si J J,et al.Development of Fe-based amorphous 高嫡合金与非晶合金应用于柔性材料做进一步研 and nanocrystalline alloys with high saturation flux density.ChinJ 究.柔性电子产业涉及物理、化学、微电子学、材 Eg,2018,40(10:1158 料学及计算机科学等学科领域,离不开多学科综 (惠希东,吕旷,斯佳佳,等.高饱和磁化强度铁基非品纳米品软 合的努力,尽管存在诸多挑战,但仍亟待学者对高 磁合金发展概况.工程科学学报,2018,40(10):1158) 嫡合金与非晶合金在柔性电子领域的应用做更加 [16] Tian L,Cheng Y Q,Shan Z W,et al.Approaching the ideal elastic 系统的研究 limit of metallic glasses.Nat Com,2012,3:609 [17]Li D Y,LiCX.Feng T.et al.High-entropy AlCoCrFeNi alloy 参考文献 fibers with high tensile strength and ductility at ambient and cryogenic temperatures.Acta Mater,2017,123:285 [1]Almuslem A S,Shaikh S F,Hussain MM.Flexible and stretchable [18]Huo W Y,Fang F,Zhou H,et al.Remarkable strength of electronics for harsh-environmental applications.Ad Mater CoCrFeNi high-entropy alloy wires at cryogenic and elevated Technol,2019,4(9):1900145 temperatures.Scripta Mater,2017,141:125 [2]Wang S H,Xu J,Wang W C,et al.Skin electronics from scalable [19]Liu J P,Chen J X,Liu T W,et al.Superior strength-ductility fabrication of an intrinsically stretchable transistor array.Nature CoCrNi medium-entropy alloy wire.Scripta Mater,2020,181:19 2018,555(7694):83 [20]Kwon Y J,Won J W,Park S H,et al.Ultrahigh-strength [3]Quintero A V,Verplancke R,De Smet H,et al.Stretchable CoCrFeMnNi high-entropy alloy wire rod with excellent resistance electronic platform for soft and smart contact lens applications to hydrogen embrittlement.Mater Sci Eng 4,2018,732:105 Ady Mater Technol,2017,2(8):1700073 [21]Ma X G,Chen J,Wang X H,et al.Microstructure and mechanical [4]Cai L,Song L,Luan P S,et al.Super-stretchable,transparent properties of cold drawing CoCrFeMnNi high entropy alloy.J carbon nanotube-based capacitive strain sensors for human motion Alloys Compd,2019,795:45 detection.Sci Rep,2013,3:3048 [22]Cho HS,Bae S J,Na Y S,et al.Influence of reduction ratio on the [5]Jang H,Park Y J,Chen X,et al.Graphene-based flexible and microstructural evolution and subsequent mechanical properties of stretchable electronics.Adv Mater,2016,28(22):4184 cold-drawn CooCrsFe2sMnoNiVo high entropy alloy wires.J [6]Kumar D,Stoichkov V,Brousseau E,et al.High performing Alloys Compd,.2020,821:153526 AgNW transparent conducting electrodes with a sheet resistance of [23]Braeckman B R,Boydens F,Hidalgo H,et al.High entropy alloy 2.5-S based upon a roll-to-roll compatible post-processing thin films deposited by magnetron sputtering of powder targets technique.Nanoscale,2019,11(12):5760 Thin Solid Films,2015,580:71 [7]Fan X,Nie W Y,Tsai H,et al.PEDOT:PSS for flexible and [24]Liao W B,Zhang H T,Liu Z Y,et al.High strength and stretchable electronics:modifications,strategies,and applications. deformation mechanisms of Alo.;CoCrFeNi high-entropy alloy thin Adv Sci,2019,6(19):1900813 films fabricated by magnetron sputtering.Entropy,2019,21(2):优劣,因此要实现柔性电子设备的实际应用关键 之一在于新型柔性材料的研发上. 高熵合金一直 是材料领域研究的热点,传统方法获得的块体高 熵合金虽然具有独特的综合性能优势,但却无法 满足作为柔性材料的可变形要求,通过一定的工 艺技术制备的高熵合金纤维或高熵合金薄膜已被 证明表现出不亚于块体高熵合金的性能,并能够 有效降低材料尺寸,赋予材料良好的机械灵活性, 是潜在的柔性电子候选材料. 非晶合金具有高的 弹性极限、优异的力学及物理性能,因此也被应用 于柔性电子器件的构建中,在可穿戴式的电子皮 肤传感器、柔性导电电极、柔性超级电容器等方 面已有出色表现,还可通过一定的几何结构设计 如弹簧结构、褶皱结构等进一步改善其机械柔性. 虽然高熵合金与非晶合金均展现出在柔性电 子领域的巨大应用前景,但目前关于高熵合金和 非晶合金柔性材料的研究仍处在初级阶段,研究 成果相对较少,仍需针对柔性电子领域的需求对 高熵合金与非晶合金应用于柔性材料做进一步研 究. 柔性电子产业涉及物理、化学、微电子学、材 料学及计算机科学等学科领域,离不开多学科综 合的努力,尽管存在诸多挑战,但仍亟待学者对高 熵合金与非晶合金在柔性电子领域的应用做更加 系统的研究. 参    考    文    献 Almuslem A S, Shaikh S F, Hussain M M. Flexible and stretchable electronics  for  harsh-environmental  applications. Adv Mater Technol, 2019, 4(9): 1900145 [1] Wang S H, Xu J, Wang W C, et al. Skin electronics from scalable fabrication  of  an  intrinsically  stretchable  transistor  array. Nature, 2018, 555(7694): 83 [2] Quintero  A  V,  Verplancke  R,  De  Smet  H,  et  al.  Stretchable electronic  platform  for  soft  and  smart  contact  lens  applications. Adv Mater Technol, 2017, 2(8): 1700073 [3] Cai  L,  Song  L,  Luan  P  S,  et  al.  Super-stretchable,  transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep, 2013, 3: 3048 [4] Jang  H,  Park  Y  J,  Chen  X,  et  al.  Graphene-based  flexible  and stretchable electronics. Adv Mater, 2016, 28(22): 4184 [5] Kumar  D,  Stoichkov  V,  Brousseau  E,  et  al.  High  performing AgNW transparent conducting electrodes with a sheet resistance of 2.5−Ω  Sq−1 based  upon  a  roll-to-roll  compatible  post-processing technique. Nanoscale, 2019, 11(12): 5760 [6] Fan  X,  Nie  W  Y,  Tsai  H,  et  al.  PEDOT:  PSS  for  flexible  and stretchable electronics: modifications, strategies, and applications. Adv Sci, 2019, 6(19): 1900813 [7] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys  with  multiple  principal  elements:  novel  alloy  design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 [8] Cantor  B,  Chang  I  T  H,  Knight  P,  et  al.  Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A, 2004, 375-377: 213 [9] Zhang W R, Liaw P K, Zhang Y. Science and technology in high￾entropy alloys. Sci China-Mater, 2018, 61(1): 2 [10] Salishchev  G  A,  Tikhonovsky  M  A,  Shaysultanov  D  G,  et  al. Effect  of  Mn  and  V  on  structure  and  mechanical  properties  of high-entropy alloys based on CoCrFeNi system. J Alloys Compd, 2014, 591: 11 [11] Ma  S  G,  Zhang  S  F,  Qiao  J  W,  et  al.  Superior  high  tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics, 2014, 54: 104 [12] Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi  high  entropy  alloys  at  room  and  cryogenic temperatures. Intermetallics, 2016, 70: 24 [13] Klement  W,  Willens  R  H,  Duwez  P.  Non-crystalline  structure  in solidified gold–silicon alloys. Nature, 1960, 187(4740): 869 [14] Hui X D, Lv K, Si J J, et al. Development of Fe-based amorphous and nanocrystalline alloys with high saturation flux density. Chin J Eng, 2018, 40(10): 1158 (惠希东, 吕旷, 斯佳佳, 等. 高饱和磁化强度铁基非晶纳米晶软 磁合金发展概况. 工程科学学报, 2018, 40(10):1158) [15] Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses. Nat Commun, 2012, 3: 609 [16] Li D Y, Li C X, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers  with  high  tensile  strength  and  ductility  at  ambient  and cryogenic temperatures. Acta Mater, 2017, 123: 285 [17] Huo  W  Y,  Fang  F,  Zhou  H,  et  al.  Remarkable  strength  of CoCrFeNi  high-entropy  alloy  wires  at  cryogenic  and  elevated temperatures. Scripta Mater, 2017, 141: 125 [18] Liu  J  P,  Chen  J  X,  Liu  T  W,  et  al.  Superior  strength-ductility CoCrNi medium-entropy alloy wire. Scripta Mater, 2020, 181: 19 [19] Kwon  Y  J,  Won  J  W,  Park  S  H,  et  al.  Ultrahigh-strength CoCrFeMnNi high-entropy alloy wire rod with excellent resistance to hydrogen embrittlement. Mater Sci Eng A, 2018, 732: 105 [20] Ma X G, Chen J, Wang X H, et al. Microstructure and mechanical properties  of  cold  drawing  CoCrFeMnNi  high  entropy  alloy. J Alloys Compd, 2019, 795: 45 [21] Cho H S, Bae S J, Na Y S, et al. Influence of reduction ratio on the microstructural evolution and subsequent mechanical properties of cold-drawn Co10Cr15Fe25Mn10Ni30V10 high entropy alloy wires. J Alloys Compd, 2020, 821: 153526 [22] Braeckman B R, Boydens F, Hidalgo H, et al. High entropy alloy thin  films  deposited  by  magnetron  sputtering  of  powder  targets. Thin Solid Films, 2015, 580: 71 [23] Liao  W  B,  Zhang  H  T,  Liu  Z  Y,  et  al.  High  strength  and deformation mechanisms of Al0.3CoCrFeNi high-entropy alloy thin films  fabricated  by  magnetron  sputtering. Entropy,  2019,  21(2): [24] 黄    浩等: 高熵合金与非晶合金柔性材料 · 127 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有