www.nature.com/scientificreports/ Predicted function of the core microbiota and non-core microbiota in vinegar Pei.To vali hich and funct For this as a separat a The tw dopapad ompared and visu xcel and Origin (v.8.0) References son of microbial c nity of different typical Chines ria in th 5.Xu,W.et al.Mo ty du lid-state ation of zhe ted food.Appl.Enviro 177,2264-227 d ci,P.Caggia,C.Bacterial po uated by L M tem gene expression during spo s wheat and spelt tions.En (2011 tionnt..Food 139,284-2922010 Reid.G.Bacterial metatranscriptome analysis of a probiotic yogurt using an RNA-Seg nd its n SME5187-183(201 16,283293(202 in mic 200N M.cta PeeaLAda1os.2472222o data. on in the fermentation of G.c ctic resonance spectroscop 19 y.Lee.s. during fer tion of saeu-jeot so prepare nships w 52(201 24 2g6S6190 2010 ie.2.O.e (201 ure vinega wang.M.D 28 of rice vi r (Komesu)and et al.Application o add bacteria in 31 o.M acetic acid b inerar It.I Foo on of rice v sessed by nous yeast population from traditional balsamic impact on flavor Agr 30072 M. iullo.M.C 12192(006) SCIENTIFIC REPORTS6:26818DOl:10.1038/srep26818www.nature.com/scientificreports/ Scientific Reports | 6:26818 | DOI: 10.1038/srep26818 9 Predicted function of the core microbiota and non-core microbiota in vinegar Pei. To validate the function of the core microbiota for the whole community in vinegar Pei, phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt), was used to predict which gene families were present48. Given that the copy number and function of bacteria were more abundant than fungi, PICRUSt was performed base on the bacterial 16S gene surveys. For this analysis, OTUs were closed-reference picked against the Greengenes by QIIME (v.1.7). The functional core taxonomies were filtered as a separate dataset of core microbiota while the remaining taxonomies were regarded as another dataset of non-core microbiota. The two datasets were normalised, predicted, and categorised according to online protocols of PICRUSt (http://huttenhower.sph.harvard.edu/galaxy). The predicted functions of the core microbiota and non-core microbiota were compared and visualised in Microsoft® Excel and Origin (v.8.0). References 1. Hugenholtz, J. Traditional biotechnology for new foods and beverages. Curr. Opin. Biotechnol. 24, 155–159 (2013). 2. Blandino, A., Al-Aseeri, M. E., Pandiella, S. S., Cantero, D. & Webb, C. Cereal-based fermented foods and beverages. Food Res. Int. 36, 527–543 (2003). 3. Wang, H. Y., Gao, Y. B., Fan, Q. W. & Xu, Y. Characterization and comparison of microbial community of different typical Chinese liquor Daqus by PCR-DGGE. Lett. Appl. Microbiol. 53, 134–140 (2011). 4. Wu, J. J., Ma, Y. K., Zhang, F. F. & Chen, F. S. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of “Shanxi aged vinegar”, a traditional Chinese vinegar. Food Microbiol. 30, 289–297 (2012). 5. Xu, W. et al. Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar. Food Microbiol. 28, 1175–1181 (2011). 6. Jung, J. Y. et al. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Microbiol. 77, 2264–2274 (2011). 7. Randazzo, C. L., Heilig, H., Restuccia, C., Giudici, P. & Caggia, C. Bacterial population in traditional sourdough evaluated by molecular methods. J. Appl. Microbiol. 99, 251–258 (2005). 8. Weckx, S. et al. Metatranscriptome analysis for insight into whole-ecosystem gene expression during spontaneous wheat and spelt sourdough fermentations. Appl. Environ. Microbiol. 77, 618–626 (2011). 9. Jung, J. Y. et al. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. Int. J. Food Microbiol. 163, 171–179 (2013). 10. Bisanz, J. E., Macklaim, J. M., Gloor, G. B. & Reid, G. Bacterial metatranscriptome analysis of a probiotic yogurt using an RNA-Seq approach. Int. Dairy J. 39, 284–292 (2014). 11. Solieri, L., Dakal, T. C. & Giudici, P. Next-generation sequencing and its potential impact on food microbial genomics. Ann. Microbiol. 63, 21–37 (2013). 12. Delmont, T. O. et al. Metagenomic mining for microbiologists. ISME J. 5, 1837–1843 (2011). 13. Trygg, J. O2-PLS for qualitative and quantitative analysis in multivariate calibration. J. Chemometr. 16, 283–293 (2002). 14. Rantalainen, M. et al. Statistically integrated metabonomic–proteomic studies on a human prostate cancer xenograft model in mice. J. Proteome Res. 5, 2642–2655 (2006). 15. Li, M. et al. Symbiotic gut microbes modulate human metabolic phenotypes. P. Natl. Acad. Sci. 105, 2117–2122 (2008). 16. Bylesjö, M., Eriksson, D., Kusano, M., Moritz, T. & Trygg, J. Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. Plant J. 52, 1181–1191 (2007). 17. Wang, Z. M. et al. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar. Food Microbiol. 50, 64–69 (2015). 18. Papotti, G. et al. Traditional balsamic vinegar and balsamic vinegar of Modena analyzed by nuclear magnetic resonance spectroscopy coupled with multivariate data analysis. LWT - Food Sci. Technol. 60, 1017–1024 (2015). 19. Jung, J. Y., Lee, S. H., Lee, H. J. & Jeon, C. O. Microbial succession and metabolite changes during fermentation of saeu-jeot: traditional Korean salted seafood. Food Microbiol. 34, 360–368 (2013). 20. Anupam, G. & Toshiaki, O. Dynamics of aroma-active volatiles in miso prepared from lizardfish meat and soy during fermentation: a comparative analysis. Int. J. Nutr. Food Sci. 1, 1–12 (2012). 21. Uysal, R. S., Soykut, E. A., Boyaci, I. H. & Topcu, A. Monitoring multiple components in vinegar fermentation using Raman spectroscopy. Food Chem. 141, 4333–4343 (2013). 22. Feng, Y. Z. et al. Changes in fatty acid composition and lipid profile during koji fermentation and their relationships with soy sauce flavor. Food Chem. 158, 438–444 (2014). 23. Jo, Y. et al. Physicochemical properties and volatile components of wine vinegars with high acidity based on fermentation stage and initial alcohol concentration. Food Sci. Biotechnol. 24, 445–452 (2015). 24. Yoshimura, M. et al. Antihypertensive effect of a γ-aminobutyric acid rich tomato cultivar ‘DG03-9’ in spontaneously hypertensive rats. J. Agric. Food Chem. 58, 615–619 (2010). 25. Wu, J. J., Gullo, M., Chen, F. S. & Giudici, P. Diversity of Acetobacter pasteurianus strains isolated from solid-state fermentation of cereal vinegars. Curr. Microbiol. 60, 280–286 (2010). 26. Nie, Z. Q. et al. Exploring microbial succession and diversity during solid-state fermentation of Tianjin duliu mature vinegar. Bioresour. Technol. 148, 325–333 (2013). 27. Nie, Z. Q., Zheng, Y., Du, H., Xie, S. & Wang, M. Dynamics and diversity of microbial community succession in traditional fermentation of Shanxi aged vinegar. Food Microbiol. 47, 62–68 (2015). 28. Nanda, K. et al. Characterization of acetic acid bacteria in traditional acetic acid fermentation of rice vinegar (Komesu) and unpolished rice vinegar (Kurosu) produced in Japan. Appl. Environ. Microbiol. 67, 986–990 (2001). 29. Gullo, M., De Vero, L. & Giudici, P. Succession of selected strains of Acetobacter pasteurianus and other acetic acid bacteria in traditional balsamic vinegar. Appl. Environ. Microbiol. 75, 2585–2589 (2009). 30. De Vero, L. et al. Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiol. 23, 809–813 (2006). 31. Gullo, M., Caggia, C., De Vero, L. & Giudici, P. Characterization of acetic acid bacteria in “traditional balsamic vinegar”. Int. J. Food Microbiol. 106, 209–212 (2006). 32. Haruta, S. et al. Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 109, 79–87 (2006). 33. Solieri, L., Landi, S., De Vero, L. & Giudici, P. Molecular assessment of indigenous yeast population from traditional balsamic vinegar. J. Appl. Microbiol. 101, 63–71 (2006). 34. Charpentier, C. et al. Release of nucleotides and nucleosides during yeast autolysis: kinetics and potential impact on flavor. J. Agric. Food Chem. 53, 3000–3007 (2005). 35. Alexandre, H. & Guilloux-Benatier, M. Yeast autolysis in sparkling wine - a review. Aust. J. Grape Wine Res. 12, 119–127 (2006). 36. Gullo, M. & Giudici, P. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection. Int. J. Food Microbiol. 125, 46–53 (2008)