正在加载图片...
.572. 工程科学学报,第41卷,第5期 tion mechanism of a medium Mn-TRIP steel at different tempera- of austenitic Fe-Mn-C TWIP steels.Corros Sci,2014,82:218 tures.Mater Sci Eng A,2017,682:698 [68]Callahan M,Hubert O,Hild F,et al.Coincidence of strain-in- [59]Speer J,Matlock D K,De Cooman B C.et al,Carbon partitio- duced TRIP and propagative PLC bands in medium Mn steels. ning into austenite after martensite transformation.Acta Mater, Mater Sci Eng A,2017,704:391 2003.51,2611 [69]Jeong T K,Jung G,Lee K,et al.Selective oxidation of Al rich [60]Seo E J,Cho L,De Cooman B C.Kinetics of the partitioning of Fe-Mn-Al-C low density steels.Mater Sci Technol,2014,30 carbon and substitutional alloying elements during quenching and (14):1805 partitioning (Q&P)processing of medium Mn steel.Acta Mater, [70]Choi JY,Hwang S W,Park K T.Twinning-induced plasticity 2016,107:354 aided high ductile duplex stainless steel.Metall Mater Trans A, [61]Seo E J,Cho L,Estrin Y,et al.Microstructure-mechanical 2013,44(2):597 properties relationships for quenching and partitioning (Q&P) [71]Lehnhoff G R,Findley K O,De Cooman B C.The influence of processed steel.Acta Mater,2016,113:124 silicon and aluminum alloying on the lattice parameter and stac- [62]Chu W Y,Qiao L.J,Li J X,et al.Hydrogen Embrittlement and king fault energy of austenitic steel.Scripta Mater,2014,92:19 Stress Corrosion.Beijing:Science Press,2013 [72]Lee Y K,Choi C.Driving force for y-s,martensitic transfor- (褚武扬,乔利杰,李金许,等.氢脆和应力腐蚀.北京:科 mation and stacking fault energy of y in Fe-Mn binary system. 学出版社,2013) Metall Mater Trans A,2000,31(2):355 [63]Liu QL,Zhou QJ,Venezuela J.et al.Hydrogen influence on [73]Olson G B,Cohen M.Kinetics of strain-induced martensitic nu- some advanced high-strength steels.Corros Sci,2017,125:114 cleation.Metall Trans A,1975,6(4):791 [64]Han J,Nam J H,Lee Y K.The mechanism of hydrogen embrit- [74]Aydin H.Jung I H,Essadiqi E,et al.Twinning and tripping in tlement in intercritically annealed medium Mn TRIP steel.Acta 10%Mn steels.Mater Sci Eng A,2014,591:90 Maer,2016,113:1 [75]Aydin H,Essadigi E,Jung I H,et al.Development of 3rd gen- [65]Wang MM,Tasan CC.Koyama M,et al.Enhancing hydrogen eration AHSS with medium Mn content alloying compositions. embrittlement resistance of lath martensite by introducing nano- Mater Sci Eng A,2013,564:501 films of interlath austenite.Metall Mater Trans A,2015,46(9): [76]Han J,Lee S J,Lee C Y,et al.The size effect of initial mar- 3797 tensite constituents on the microstructure and tensile properties of [66]Laureys A,Depover T,Petrov R,et al.Characterization of hy- intercritically annealed Fe-9Mn-0.05C steel.Mater Sci Eng A, drogen induced cracking in TRIP-assisted steels.Int Hydrogen 2015,633:9 Energy,2015,40(47):16901 [77]Zou Y,Xu Y B,Hu Z P,et al.Austenite stability and its effect [67]Dieudonne T,Marchetti L,Wery M,et al.Role of copper and on the toughness of a high strength ultra-low carbon medium man- aluminum additions on the hydrogen embrittlement susceptibility ganese steel plate.Mater Sci Eng A,2016,675:153工程科学学报,第 41 卷,第 5 期 tion mechanism of a medium Mn鄄TRIP steel at different tempera鄄 tures. Mater Sci Eng A, 2017, 682: 698 [59] Speer J, Matlock D K, De Cooman B C, et al, Carbon partitio鄄 ning into austenite after martensite transformation. Acta Mater, 2003, 51, 2611 [60] Seo E J, Cho L, De Cooman B C. Kinetics of the partitioning of carbon and substitutional alloying elements during quenching and partitioning (Q&P) processing of medium Mn steel. Acta Mater, 2016, 107: 354 [61] Seo E J, Cho L, Estrin Y, et al. Microstructure鄄mechanical properties relationships for quenching and partitioning ( Q&P) processed steel. Acta Mater, 2016, 113: 124 [62] Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion. Beijing: Science Press, 2013 (褚武扬, 乔利杰, 李金许, 等. 氢脆和应力腐蚀. 北京: 科 学出版社, 2013) [63] Liu Q L, Zhou Q J, Venezuela J, et al. Hydrogen influence on some advanced high鄄strength steels. Corros Sci, 2017, 125: 114 [64] Han J, Nam J H, Lee Y K. The mechanism of hydrogen embrit鄄 tlement in intercritically annealed medium Mn TRIP steel. Acta Mater, 2016, 113: 1 [65] Wang M M, Tasan C C, Koyama M, et al. Enhancing hydrogen embrittlement resistance of lath martensite by introducing nano鄄 films of interlath austenite. Metall Mater Trans A, 2015, 46(9): 3797 [66] Laureys A, Depover T, Petrov R, et al. Characterization of hy鄄 drogen induced cracking in TRIP鄄assisted steels. Int J Hydrogen Energy, 2015, 40(47): 16901 [67] Dieudonn佴 T, Marchetti L, Wery M, et al. Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe鄄鄄Mn鄄鄄C TWIP steels. Corros Sci, 2014, 82: 218 [68] Callahan M, Hubert O, Hild F, et al. Coincidence of strain鄄in鄄 duced TRIP and propagative PLC bands in medium Mn steels. Mater Sci Eng A, 2017, 704: 391 [69] Jeong T K, Jung G, Lee K, et al. Selective oxidation of Al rich Fe鄄鄄Mn鄄鄄Al鄄鄄C low density steels. Mater Sci Technol, 2014, 30 (14): 1805 [70] Choi J Y, Hwang S W, Park K T. Twinning鄄induced plasticity aided high ductile duplex stainless steel. Metall Mater Trans A, 2013, 44(2): 597 [71] Lehnhoff G R, Findley K O, De Cooman B C. The influence of silicon and aluminum alloying on the lattice parameter and stac鄄 king fault energy of austenitic steel. Scripta Mater, 2014, 92: 19 [72] Lee Y K, Choi C. Driving force for 酌寅着, martensitic transfor鄄 mation and stacking fault energy of 酌 in Fe鄄Mn binary system. Metall Mater Trans A, 2000, 31(2): 355 [73] Olson G B, Cohen M. Kinetics of strain鄄induced martensitic nu鄄 cleation. Metall Trans A, 1975, 6(4): 791 [74] Aydin H, Jung I H, Essadiqi E, et al. Twinning and tripping in 10% Mn steels. Mater Sci Eng A, 2014, 591: 90 [75] Aydin H, Essadiqi E, Jung I H, et al. Development of 3rd gen鄄 eration AHSS with medium Mn content alloying compositions. Mater Sci Eng A, 2013, 564: 501 [76] Han J, Lee S J, Lee C Y, et al. The size effect of initial mar鄄 tensite constituents on the microstructure and tensile properties of intercritically annealed Fe鄄鄄9Mn鄄鄄0郾 05C steel. Mater Sci Eng A, 2015, 633: 9 [77] Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra鄄low carbon medium man鄄 ganese steel plate. Mater Sci Eng A, 2016, 675: 153 ·572·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有