正在加载图片...
徐娟萍等:中锰钢的研究进展与前景 ·571· Mn transformation-induced plasticity steel.Acta Mater,2017, y,2012 124:17 [43]Leslie W C,Rauch G C.Precipitation of carbides in low-carbon [28]He BB,Hu B,Yen H W,et al.High dislocation density-in- Fe-Al-C alloys.Metall Trans A,1978,9(3):343 duced large ductility in deformed and partitioned steels.Science, [44]Suh D W,Park S J.Lee T H,et al.Influence of Al on the mi- 2017,357(6355):1029 crostructural evolution and mechanical behavior of low-carbon, [29]Wang MM,Tasan CC,Ponge D,et al.Nanolaminate transfor- manganese transformation-induced-plasticity steel.Metall Mater mation-induced plasticity-twinning-induced plasticity steel with Trans A,2010,41(2):397 dynamic strain partitioning and enhanced damage resistance.Acta [45]Ryu J H,Kim DI,Kim H S,et al.Strain partitioning and me- Mater,2015,85:216 chanical stability of retained austenite.Scripta Mater,2010,63 [30]Han J,Lee S J,Jung J G,et al.The effects of the initial mar- (3):297 tensite microstructure on the microstructure and tensile properties [46]Yang F,Luo H W.Hu C D,et al.Effects of intercritical annea- of intercritically annealed Fe-9Mn-0.05C steel.Acta Mater, ling process on microstructures and tensile properties of cold- 2014,78:369 rolled 7Mn steel.Mater Sci Eng A.2017,685:115 [31]da Silva A K,Leyson G,Kuzmina M,et al.Confined chemical [47]Lee S,Estrin Y,De Cooman B C.Constitutive modeling of the and structural states at dislocations in Fe-9w%Mn steels:a cor- mechanical properties of V-added medium manganese TRIP steel. relative TEM-atom probe study combined with multiscale model- Metall Mater Trans A,2013,44(7):3136 ling.Acta Mater,2017,124:305 [48]Wu Y X.Research of Low Cycle Fatigue and Delayed Fracture [32]Latypov MI,Shin S,De Cooman B C,et al.Micromechanical Beharior of TWIP Steel[Dissertation].Beijing:University of Sci- finite element analysis of strain partitioning in multiphase medium ence and Technology Beijing,2015 manganese TWIP TRIP steel.Acta Mater,2016,108:219 (吴彦欣.TWP钢的疲劳行为及延迟断裂研究[学位论 [33]Han J,da Silva A K.Ponge D,et al.The effects of prior austen- 文].北京:北京科技大学,2015) ite grain boundaries and microstructural morphology on the impact [49]Miller R L.Utrafine-grained microstructures and mechanical toughness of intercritically annealed medium Mn steel.Acta Ma- properties of alloy steels.Metall Trans,1972,3(4):905 ter,2017,122:199 [50]Chen J,Lii M Y,Liu Z Y,et al.Combination of ductility and [34]Kuzmina M,Herbig M,Ponge D,et al.Linear complexions: toughness by the design of fine ferrite/tempered martensite-aus- Confined chemical and structural states at dislocations.Science, tenite microstructure in a low carbon medium manganese alloyed 2015,349(6252):1080 steel plate.Mater Sci Eng A,2015,648:51 [35]Kuzmina M.Ponge D,Raabe D.Grain boundary segregation en- [51]Li Z C,Ding H,Misra R D K,et al.Microstructure-mechanical gineering and austenite reversion tum embrittlement into tough- property relationship and austenite stability in medium-Mn TRIP ness:example of a 9 wt.medium Mn steel.Acta Mater, steels:The effect of austenite-reverted transformation and 2015,86:182 quenching-tempering treatments.Mater Sci Eng A,2017,682: [36]Chin K G,Kang C Y,Shin S Y,et al.Effects of Al addition on 211 deformation and fracture mechanisms in two high manganese [52]Sun B H,Fazeli F.Scott C,et al.Critical role of strain partitio- TWIP steels.Mater Sci Eng A,2011,528(6):2922 ning and deformation twinning on cracking phenomenon occurring [37]Ryu J H,Kim S K,Lee C S,et al.Effect of aluminium on hy- during cold rolling of two duplex medium manganese steels. drogen-induced fracture behaviour in austenitic Fe-Mn-C steel. Scripta Mater,2017,130:49 P-oc R Soc A,2013,469(2149):20120458 [53]Gibbs P J,De Moor E,Merwin M J,et al.Austenite stability [38]Hong S,Shin Y,Kim HS,et al.Effects of aluminum addition effects on tensile behavior of manganese-enriched-austenite trans- on tensile and cup forming properties of three twinning induced formation-induced plasticity steel.Metall Mater Trans A,2011, plasticity steels.Metall Mater Trans A,2012,43(6):1870 42(12):3691 [39]Dicudonne T,Marchetti L.Wery M,et al.Role of copper and [54]Wang MM,Tasan CC,Ponge D,et al.Smaller is less stable: aluminum on the corrosion behavior of austenitic Fe-Mn-C TWIP Size effects on twinning vs.transformation of reverted austenite in steels in aqueous solutions and the related hydrogen absorption. TRIP-maraging steels.Acta Mater,2014,79:268 Corros Sci,2014,83:234 [55]Nakada N,Mizutani K,Tsuchiyama T,et al.Difference in [40]Park I J,Jeong K H,Jung J G,et al.The mechanism of en- transformation behavior between ferrite and austenite formations in hanced resistance to the hydrogen delayed fracture in Al-added medium manganese steel.Acta Mater,2014,65:251 Fe-18Mn-0.6C twinning-induced plasticity steels.Int Hydro- [56]Han J.Lee Y K.The effects of the heating rate on the reverse gen Energy,2012,37(12):9925 transformation mechanism and the phase stability of reverted aus- [41]Chun Y S.Park K T,Lee C S.Delayed static failure of twin- tenite in medium Mn steels.Acta Mater,2014,67:354 ning-induced plasticity steels.Scripta Mater,2012,66(12): [57]Gibbs P J,De Cooman B C,Brown D W,et al.Strain partitio- 960 ning in ultra-fine grained medium-manganese transformation in- [42]Ryu J H.Hydrogen Embritlement in TRIP and TWIP Steel[Dis- duced plasticity steel.Mater Sci Eng A,2014,609:323 sertation].Pohang:Pohang University of Science and Technolo- [58]Luo L B,Li W,Wang L,et al.Tensile behaviors and deforma-徐娟萍等: 中锰钢的研究进展与前景 Mn transformation鄄induced plasticity steel. Acta Mater, 2017, 124: 17 [28] He B B, Hu B, Yen H W, et al. High dislocation density鄄鄄 in鄄 duced large ductility in deformed and partitioned steels. Science, 2017, 357(6355): 1029 [29] Wang M M, Tasan C C, Ponge D, et al. Nanolaminate transfor鄄 mation鄄induced plasticity鄄鄄 twinning鄄induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater, 2015, 85: 216 [30] Han J, Lee S J, Jung J G, et al. The effects of the initial mar鄄 tensite microstructure on the microstructure and tensile properties of intercritically annealed Fe鄄鄄 9Mn鄄鄄 0郾 05C steel. Acta Mater, 2014, 78: 369 [31] da Silva A K, Leyson G, Kuzmina M, et al. Confined chemical and structural states at dislocations in Fe鄄9wt% Mn steels: a cor鄄 relative TEM鄄atom probe study combined with multiscale model鄄 ling. Acta Mater, 2017, 124: 305 [32] Latypov M I, Shin S, De Cooman B C, et al. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP + TRIP steel. Acta Mater, 2016, 108: 219 [33] Han J, da Silva A K, Ponge D, et al. The effects of prior austen鄄 ite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Ma鄄 ter, 2017, 122: 199 [34] Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: Confined chemical and structural states at dislocations. Science, 2015, 349(6252): 1080 [35] Kuzmina M, Ponge D, Raabe D. Grain boundary segregation en鄄 gineering and austenite reversion turn embrittlement into tough鄄 ness: example of a 9 wt. % medium Mn steel. Acta Mater, 2015, 86: 182 [36] Chin K G, Kang C Y, Shin S Y, et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. Mater Sci Eng A, 2011, 528(6): 2922 [37] Ryu J H, Kim S K, Lee C S, et al. Effect of aluminium on hy鄄 drogen鄄induced fracture behaviour in austenitic Fe鄄鄄 Mn鄄鄄 C steel. Proc R Soc A, 2013, 469(2149): 20120458 [38] Hong S, Shin S Y, Kim H S, et al. Effects of aluminum addition on tensile and cup forming properties of three twinning induced plasticity steels. Metall Mater Trans A, 2012, 43(6): 1870 [39] Dieudonn佴 T, Marchetti L, Wery M, et al. Role of copper and aluminum on the corrosion behavior of austenitic Fe鄄鄄Mn鄄鄄C TWIP steels in aqueous solutions and the related hydrogen absorption. Corros Sci, 2014, 83: 234 [40] Park I J, Jeong K H, Jung J G, et al. The mechanism of en鄄 hanced resistance to the hydrogen delayed fracture in Al鄄added Fe鄄鄄18Mn鄄鄄0郾 6C twinning鄄induced plasticity steels. Int J Hydro鄄 gen Energy, 2012, 37(12): 9925 [41] Chun Y S, Park K T, Lee C S. Delayed static failure of twin鄄 ning鄄induced plasticity steels. Scripta Mater, 2012, 66 ( 12 ): 960 [42] Ryu J H. Hydrogen Embrittlement in TRIP and TWIP Steel[Dis鄄 sertation]. Pohang: Pohang University of Science and Technolo鄄 gy, 2012 [43] Leslie W C, Rauch G C. Precipitation of carbides in low鄄carbon Fe鄄鄄Al鄄鄄C alloys. Metall Trans A, 1978, 9(3): 343 [44] Suh D W, Park S J, Lee T H, et al. Influence of Al on the mi鄄 crostructural evolution and mechanical behavior of low鄄carbon, manganese transformation鄄induced鄄plasticity steel. Metall Mater Trans A, 2010, 41(2): 397 [45] Ryu J H, Kim D I, Kim H S, et al. Strain partitioning and me鄄 chanical stability of retained austenite. Scripta Mater, 2010, 63 (3): 297 [46] Yang F, Luo H W, Hu C D, et al. Effects of intercritical annea鄄 ling process on microstructures and tensile properties of cold鄄 rolled 7Mn steel. Mater Sci Eng A, 2017, 685: 115 [47] Lee S, Estrin Y, De Cooman B C. Constitutive modeling of the mechanical properties of V鄄added medium manganese TRIP steel. Metall Mater Trans A, 2013, 44(7): 3136 [48] Wu Y X. Research of Low Cycle Fatigue and Delayed Fracture Behavior of TWIP Steel[Dissertation]. Beijing: University of Sci鄄 ence and Technology Beijing, 2015 (吴彦欣. TWIP 钢的疲劳行为及延迟断裂研究 [ 学位论 文]. 北京: 北京科技大学, 2015) [49] Miller R L. Ultrafine鄄grained microstructures and mechanical properties of alloy steels. Metall Trans, 1972, 3(4): 905 [50] Chen J, L俟 M Y, Liu Z Y, et al. Combination of ductility and toughness by the design of fine ferrite / tempered martensite鄄鄄 aus鄄 tenite microstructure in a low carbon medium manganese alloyed steel plate. Mater Sci Eng A, 2015, 648: 51 [51] Li Z C, Ding H, Misra R D K, et al. Microstructure鄄mechanical property relationship and austenite stability in medium鄄Mn TRIP steels: The effect of austenite鄄reverted transformation and quenching鄄tempering treatments. Mater Sci Eng A, 2017, 682: 211 [52] Sun B H, Fazeli F, Scott C, et al. Critical role of strain partitio鄄 ning and deformation twinning on cracking phenomenon occurring during cold rolling of two duplex medium manganese steels. Scripta Mater, 2017, 130: 49 [53] Gibbs P J, De Moor E, Merwin M J, et al. Austenite stability effects on tensile behavior of manganese鄄enriched鄄austenite trans鄄 formation鄄induced plasticity steel. Metall Mater Trans A, 2011, 42(12): 3691 [54] Wang M M, Tasan C C, Ponge D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP鄄maraging steels. Acta Mater, 2014, 79: 268 [55] Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater, 2014, 65: 251 [56] Han J, Lee Y K. The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted aus鄄 tenite in medium Mn steels. Acta Mater, 2014, 67: 354 [57] Gibbs P J, De Cooman B C, Brown D W, et al. Strain partitio鄄 ning in ultra鄄fine grained medium鄄manganese transformation in鄄 duced plasticity steel. Mater Sci Eng A, 2014, 609: 323 [58] Luo L B, Li W, Wang L, et al. Tensile behaviors and deforma鄄 ·571·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有