正在加载图片...
·570· 工程科学学报,第41卷,第5期 装工艺,特别是服役过程中有可能发生的延迟开裂 grained structure of austenite.Acta Mater,2015,84:I 等,中锰钢大规模推广应用前必须要进行系统的研 [12]Cao WQ,Wang C,Shi J,et al.Microstructure and mechanical 究和全面的认知.为提高中锰钢延迟开裂性能,可 properties of Fe-0.2C-5Mn steel processed by ART-annealing. Mater Sci Eng A,2011,528(22-23):6661 以提高具有大的氢溶解度和慢的扩散系数的奥氏体 [13]Cai Z H,Ding H,Kamoutsi H,et al.Interplay between deform- 相的体积分数,并调控奥氏体相的形貌和分布,尽可 ation behavior and mechanical properties of intereritically an- 能以纳米级薄膜状形态存在于马氏体板条界,使其 nealed and tempered medium-manganese transformation-induced 成为氢扩散的一道道屏障,从而阻止氢的富集,提高 plasticity steel.Mater Sci Eng A,2016,654:359 抗氢性能.控制中锰钢的塑性变形和成形性,可通 [14]Lee S,De Cooman B C.Tensile behavior of intercritically an- 过调控奥氏体相内元素分布改善其稳定性.另外, nealed ultra-fine grained8%Mn multi-phase steel.Steel Res Int, 2015,86(10):1170 对处于多相组织中的奥氏体相的层错能计算和形变 [15]Heo Y U,Suh D W,Lee H C.Fabrication of an ultrafine- 预报模型的研究,有可能会成为中锰钢不同于其他 grained structure by a compositional pinning technique.Acta Ma- 超高强度马氏体钢的一个方向,如是,则可以通过计 ter,2014,77:236 算反过来指导临界退火等工艺参数的选择,凭借材 [16]Li Z C,Ding H,Cai Z H.Mechanical properties and austenite 料基因工程计算、实验和数据库的融合,实现中锰钢 stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel. 的高效研发. Mater Sci Eng A.2015,639:559 [17]Li Z C,Ding H,Misra R D K,et al.Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain 参考文献 on the Liiders bands.Mater Sci Eng A,2017,679:230 [18]Zhao X M,Shen Y F,Qiu L N,et al.Effects of intercritical an- [1]Grassel O,Kruger L,Frommeyer C,et al.High strength Fe-Mn- nealing temperature on mechanical properties of Fe-7.9Mn- (Al,Si)TRIP TWIP steels development-properties-application. 0.14Si-0.05Al-0.07 C steel..Materials,2014,7(12):7891 Int J Plast,.2000,16(10-11):1391 [19]Hanamura T,Torizuka S,Sunahara A,et al.Excellent total me- [2]Lee Y K,Han J.Current opinion in medium manganese steel. chanical-properties-balance of 5%Mn.30000 MPa%steel.IS/ Mater Sci Technol,2015,31(7):843 1m,2011,51(4):685 [3]Cai M H,Zhu WJ,Stanford N,et al.Dependence of deformation [20]Cai Z H,Ding H,Misra R D K,et al.Austenite stability and behavior on grain size and strain rate in an ultrahigh strength-duc- deformation behavior in a cold-rolled transformation-induced plas tile Mn-based TRIP alloy.Mater Sci Eng A,2016,653:35 ticity steel with medium manganese content.Acta Mater,2015, [4]Wang C.Cao WQ,Shi J,et al.Deformation microstructures and 84:229 strengthening mechanisms of an ultrafine grained duplex medium- [21]Cai M H,Li Z,Chao Q,et al.A novel Mo and Nb microalloyed Mn steel.Mater Sci Eng A,2013,562:89 medium Mn TRIP steel with maximal ultimate strength and mod- [5]Cai Z H,Ding H,Xue X,et al.Significance of control of austen- erate ductility.Metall Mater Trans A,2014,45(12)5624 ite stability and three-stage work-hardening behavior of an ultrahigh [22]Xu Y B,Hu Z P,Zou Y,et al.Effect of two-step intercritical strength-high ductility combination transformation-induced plastic- annealing on microstructure and mechanical properties of hot- ity steel.Scripta Mater,2013,68(11):865 rolled medium manganese TRIP steel containing 8-ferrite.Mater [6]Cai Z H,Cai B,Ding H,et al.Microstructure and deformation Sei Eng A.2017,688:40 behavior of the hot-rolled medium manganese steels with varying [23]Sun B H,Vanderesse N,Fazeli F,et al.Discontinuous strain- aluminum-content.Mater Sci Eng A,2016,676:263 induced martensite transformation related to the Portevin-Le Chat- [7]Park S J,Hwang B,Lee K H,et al.Microstructure and tensile elier effect in a medium manganese steel.Scripta Mater,2017, behavior of duplex low-density steel containing 5mass%alumi- 133:9 num.Scripta Mater,2013,68(6):365 [24]Shao C W,Hui W J,Zhang Y J,et al.Microstructure and me- [8] Cai Z H,Ding H,Xue X,et al.Microstructural evolution and chanical properties of hot-rolled medium-Mn steel containing3% mechanical properties of hot-rolled 11%manganese TRIP steel. aluminum.Mater Sci Eng A,2017,682:45 Mater Sci Eng A,2013.560:388 [25]Lee S,Lee K,De Cooman B C.Observation of the TWIP [9]Zhang R,Cao WQ,Peng Z J,et al.Intercritical rolling induced TRIP plasticity-enhancement mechanism in Al-added 6 wt pet ultrafine microstructure and excellent mechanical properties of the medium Mn steel.Metall Mater Trans A,2015,46(6):2356 medium-Mn steel.Mater Sci Eng A,2013,583:84 [26]Hu J,Cao WQ.Wang C Y,et al.Phase transformation behav- [10]Xu H F,Zhao J.Cao W Q,et al.Heat treatment effects on the ior of cold molled 0.IC-5Mn steel during heating process studied microstructure and mechanical properties of a medium manganese by differential scanning calorimetry.Mater Sci Eng A,2015, steel (0.2C-5Mn).Mater Sci Eng A,2012,532:435 636:108 [11]Lee C Y,Jeong J,Han J,et al.Coupled strengthening in a me- [27]Wang X G,Wang L,Huang M X.Kinematic and thermal char- dium manganese lightweight steel with an inhomogeneously acteristics of Luiders and Portevin-Le Chatelier bands in a medium工程科学学报,第 41 卷,第 5 期 装工艺,特别是服役过程中有可能发生的延迟开裂 等,中锰钢大规模推广应用前必须要进行系统的研 究和全面的认知. 为提高中锰钢延迟开裂性能,可 以提高具有大的氢溶解度和慢的扩散系数的奥氏体 相的体积分数,并调控奥氏体相的形貌和分布,尽可 能以纳米级薄膜状形态存在于马氏体板条界,使其 成为氢扩散的一道道屏障,从而阻止氢的富集,提高 抗氢性能. 控制中锰钢的塑性变形和成形性,可通 过调控奥氏体相内元素分布改善其稳定性. 另外, 对处于多相组织中的奥氏体相的层错能计算和形变 预报模型的研究,有可能会成为中锰钢不同于其他 超高强度马氏体钢的一个方向,如是,则可以通过计 算反过来指导临界退火等工艺参数的选择,凭借材 料基因工程计算、实验和数据库的融合,实现中锰钢 的高效研发. 参 考 文 献 [1] Gr覿ssel O, Kr俟ger L, Frommeyer G, et al. High strength Fe鄄鄄Mn鄄鄄 (Al, Si) TRIP / TWIP steels development鄄properties鄄application. Int J Plast, 2000, 16(10鄄11):1391 [2] Lee Y K, Han J. Current opinion in medium manganese steel. Mater Sci Technol, 2015, 31(7): 843 [3] Cai M H, Zhu W J, Stanford N, et al. Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength鄄duc鄄 tile Mn鄄based TRIP alloy. Mater Sci Eng A, 2016, 653: 35 [4] Wang C, Cao W Q, Shi J, et al. Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium鄄 Mn steel. Mater Sci Eng A, 2013, 562: 89 [5] Cai Z H, Ding H, Xue X, et al. Significance of control of austen鄄 ite stability and three鄄stage work鄄hardening behavior of an ultrahigh strength鄄鄄high ductility combination transformation鄄induced plastic鄄 ity steel. Scripta Mater, 2013, 68(11): 865 [6] Cai Z H, Cai B, Ding H, et al. Microstructure and deformation behavior of the hot鄄rolled medium manganese steels with varying aluminum鄄content. Mater Sci Eng A, 2016, 676: 263 [7] Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low鄄density steel containing 5mass% alumi鄄 num. Scripta Mater, 2013, 68(6): 365 [8] Cai Z H, Ding H, Xue X, et al. Microstructural evolution and mechanical properties of hot鄄rolled 11% manganese TRIP steel. Mater Sci Eng A, 2013, 560: 388 [9] Zhang R, Cao W Q, Peng Z J, et al. Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium鄄Mn steel. Mater Sci Eng A, 2013, 583: 84 [10] Xu H F, Zhao J, Cao W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0郾 2C鄄鄄5Mn). Mater Sci Eng A, 2012, 532: 435 [11] Lee C Y, Jeong J, Han J, et al. Coupled strengthening in a me鄄 dium manganese lightweight steel with an inhomogeneously grained structure of austenite. Acta Mater, 2015, 84: 1 [12] Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe鄄鄄0郾 2C鄄鄄5Mn steel processed by ART鄄annealing. Mater Sci Eng A, 2011, 528(22鄄23): 6661 [13] Cai Z H, Ding H, Kamoutsi H, et al. Interplay between deform鄄 ation behavior and mechanical properties of intercritically an鄄 nealed and tempered medium鄄manganese transformation鄄induced plasticity steel. Mater Sci Eng A, 2016, 654: 359 [14] Lee S, De Cooman B C. Tensile behavior of intercritically an鄄 nealed ultra鄄fine grained 8% Mn multi鄄phase steel. Steel Res Int, 2015, 86(10): 1170 [15] Heo Y U, Suh D W, Lee H C. Fabrication of an ultrafine鄄 grained structure by a compositional pinning technique. Acta Ma鄄 ter, 2014, 77: 236 [16] Li Z C, Ding H, Cai Z H. Mechanical properties and austenite stability in hot鄄鄄 rolled 0郾 2C鄄鄄 1郾 6 / 3郾 2Al鄄鄄 6Mn鄄鄄 Fe TRIP steel. Mater Sci Eng A, 2015, 639: 559 [17] Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold鄄rolled medium鄄manganese TRIP steel and effect of pre鄄strain on the L俟ders bands. Mater Sci Eng A, 2017, 679: 230 [18] Zhao X M, Shen Y F, Qiu L N, et al. Effects of intercritical an鄄 nealing temperature on mechanical properties of Fe鄄鄄 7郾 9Mn鄄鄄 0郾 14Si鄄鄄0郾 05Al鄄鄄0郾 07C steel. Materials, 2014, 7(12): 7891 [19] Hanamura T, Torizuka S, Sunahara A, et al. Excellent total me鄄 chanical鄄properties鄄balance of 5% Mn, 30000 MPa% steel. ISIJ Int, 2011, 51(4): 685 [20] Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold鄄rolled transformation鄄induced plas鄄 ticity steel with medium manganese content. Acta Mater, 2015, 84: 229 [21] Cai M H, Li Z, Chao Q, et al. A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and mod鄄 erate ductility. Metall Mater Trans A, 2014, 45(12): 5624 [22] Xu Y B, Hu Z P, Zou Y, et al. Effect of two鄄step intercritical annealing on microstructure and mechanical properties of hot鄄 rolled medium manganese TRIP steel containing 啄鄄ferrite. Mater Sci Eng A, 2017, 688: 40 [23] Sun B H, Vanderesse N, Fazeli F, et al. Discontinuous strain鄄 induced martensite transformation related to the Portevin鄄Le Chat鄄 elier effect in a medium manganese steel. Scripta Mater, 2017, 133: 9 [24] Shao C W, Hui W J, Zhang Y J, et al. Microstructure and me鄄 chanical properties of hot鄄rolled medium鄄Mn steel containing 3% aluminum. Mater Sci Eng A, 2017, 682: 45 [25] Lee S, Lee K, De Cooman B C. Observation of the TWIP + TRIP plasticity鄄enhancement mechanism in Al鄄added 6 wt pct medium Mn steel. Metall Mater Trans A, 2015, 46(6): 2356 [26] Hu J, Cao W Q, Wang C Y, et al. Phase transformation behav鄄 ior of cold rolled 0郾 1C鄄鄄5Mn steel during heating process studied by differential scanning calorimetry. Mater Sci Eng A, 2015, 636: 108 [27] Wang X G, Wang L, Huang M X. Kinematic and thermal char鄄 acteristics of L俟ders and Portevin鄄Le Ch覾telier bands in a medium ·570·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有