正在加载图片...
60· 工程科学学报,第38卷,增刊1 析出物一般在900℃以下开始析出. B] Xu F Y,Bai B Z,Fang H S.Development of titanium m icro-allo- ying in high strength low alloy steel.Heat Treat Met,2007(12): 0.0006 ◆4 ·-G=0.23V=0.020N=0.01 2g -C=0.24V-0.032N=0.01 0.0005 -C-0.24V-0.042N=0.01 (许峰云,白秉哲,方鸿生.低合金高强度钢钛微合金化进展 0.0004 金属热处理,2007(12):29) [4]Li Z,Wu D.Study of the high strength and low yield ratio cold 0.0003 forging steel.Mater Sci Eng A,2007(1)142 02 [5]Zong Y,Zhao L P,Ma Y L,et al.Continuous cooling transforma- tion behavior and micro-structure of low carbon Nb-bearing micro- 0.0001L alloyed steel.Mater Mech Eng,2011(7):31 (宗云,赵莉萍,麻永林,等.低碳含铌微合金钢的连续冷却相 50060070080090010001100120013001400 变行为及显微组织.机械工程材料,2011(7):31) 温度汇 [6]Yang W Y,Hu A M,Qi JJ,et al.Microstructure refinement of 图3不同钒含量螺纹钢析出热力学计算 deformation-enhanced transformation in low carbon Steel.Chin J Mater Res,2001(2):171 Fig.3 The results of thermodynamic computation with different con- tent of V (杨正玥,胡安民,齐俊杰,等.低碳钢形变强化相变的组织细 化.材料研究学报,2001(2):171) ] Wu LZ,Chen J,Zhang H B.Dynamic recrystallization of austenite 4结论 and grain refinement in 40Cr Steel.J Shanghai Jiaotong Unir, (1)试样不同位置晶粒度统计分析发现试样晶粒 2008(5):786 尺寸从中心到边缘处逐渐减小,并且随着V含量增 (伍来智,陈军,张鸿冰.40C钢奥氏体动态再结品及品粒细 化.上海交通大学学报,2008(5):786) 加,试样晶粒度从6.7增加到7.3. 8] Li Y,Crowther D N,Mitchell P S,et al.The evolution of micro- (2)通过对拉伸实验数据的分析发现,螺纹钢的 structure during thin slab direct rolling processing in vanadium mi- 屈服强度随着V含量增加而明显增加. croalloyed steels.IS/J Int,2002,42(6):636 (3)对不同钒含量螺纹钢中微合金元素析出强化 9] Cracknell A,Petch N J.Frictional forces on dislocation arrays at 效果进行了计算,结果发现V含量从0.020%增加到 the lower yield point in iron.Acta Metall,1955,3 (2):186 [10]Zou H,Kirkaldy J S.Thermodynamic calculation and experimen- 0.032%和0.042%的过程中,析出强化强度分别提升 tal verification of the carbonitridl austenite equilibrium in Ti-Nb 了34和39MPa. micro-alloyed steels.Metall Trans A,1992,23(2):651 (4)通过对不同钒含量螺纹钢析出热力学计算结 011 Cui X H,Xu Y B,Wang Z D,et al.Thermodynamic calculation 果发现,碳含量对钒析出物量有一定影响,钒的析出物 and analysis of carbon-nitride precipitation behavior in Nb-Ti 一般在900℃以下开始析出. Micro-alloyed.Res fron Steel,2005,32(5):3 (崔旭辉,许云波,王昭东,等.N凸一-T微合金钢碳氮化物的析 出热力学模型及分析.钢铁研究,2005,32(5):3) 参考文献 [12]Xu Y B,Yu Y M,Wu D,et al.Thermodynamic Calculations of 1]Yang C F,Zhang Y Q,Liu S P.Strengthening mechanism in V-N Precipitation Behavior in Nb Micro-alloyed Steels.Chin Mater micro-alloyed reinforcing bar steels.Iron Steel,2001,36(5):55 Res,2009,20(1):104 (杨才福,张永权,柳书平.钒、氮微合金化钢筋的强化机制.钢 (许云波,于永梅,吴迪,等.Nb微合金钢析出行为的热力学 铁,2001,36(5):55) 计算.材料研究学报,2009,20(1):104) 2]Wei B,Han B,Yang Y,Tan W,et al.Research on low temperature [13]Gao N,Baker T N.Influence of AlN precipitation on thermody- rolling technology of low carbon steel.J Wuhan Unie Sci Technol, namic parameters in C-Al-V-N microalloyed steels.ISIJ Int, 2003(4):258 1997,37(6):596 (魏兵,韩斌,杨奕,等.低碳钢低温轧制工艺实验研究.武汉科 [14]Tumnbull D.Formation of crystal nuclei in liquid metals.J App 技大学学报,2003(4):258) Phs,1950,21(10):1022工程科学学报,第 38 卷,增刊 1 析出物一般在 900 ℃以下开始析出. 图 3 不同钒含量螺纹钢析出热力学计算 Fig. 3 The results of thermodynamic computation with different con￾tent of V 4 结论 ( 1) 试样不同位置晶粒度统计分析发现试样晶粒 尺寸从中心到边缘处逐渐减小,并且随着 V 含量增 加,试样晶粒度从 6. 7 增加到 7. 3. ( 2) 通过对拉伸实验数据的分析发现,螺纹钢的 屈服强度随着 V 含量增加而明显增加. ( 3) 对不同钒含量螺纹钢中微合金元素析出强化 效果进行了计算,结果发现 V 含量从 0. 020% 增加到 0. 032% 和 0. 042% 的过程中,析出强化强度分别提升 了 34 和 39 MPa. ( 4) 通过对不同钒含量螺纹钢析出热力学计算结 果发现,碳含量对钒析出物量有一定影响,钒的析出物 一般在 900 ℃以下开始析出. 参 考 文 献 [1] Yang C F,Zhang Y Q,Liu S P. Strengthening mechanism in V--N micro-alloyed reinforcing bar steels. Iron Steel,2001,36( 5) : 55 ( 杨才福,张永权,柳书平. 钒、氮微合金化钢筋的强化机制. 钢 铁,2001,36( 5) : 55) [2] Wei B,Han B,Yang Y,Tan W,et al. Research on low temperature rolling technology of low carbon steel. J Wuhan Univ Sci Technol, 2003( 4) : 258 ( 魏兵,韩斌,杨奕,等. 低碳钢低温轧制工艺实验研究. 武汉科 技大学学报,2003( 4) : 258) [3] Xu F Y,Bai B Z,Fang H S. Development of titanium m icro-allo￾ying in high strength low alloy steel. Heat Treat Met,2007( 12) : 29 ( 许峰云,白秉哲,方鸿生. 低合金高强度钢钛微合金化进展. 金属热处理,2007( 12) : 29) [4] Li Z,Wu D. Study of the high strength and low yield ratio cold forging steel. Mater Sci Eng A,2007( 1) : 142 [5] Zong Y,Zhao L P,Ma Y L,et al. Continuous cooling transforma￾tion behavior and micro-structure of low carbon Nb-bearing micro￾alloyed steel. Mater Mech Eng,2011( 7) : 31 ( 宗云,赵莉萍,麻永林,等. 低碳含铌微合金钢的连续冷却相 变行为及显微组织. 机械工程材料,2011( 7) : 31) [6] Yang W Y,Hu A M,Qi J J,et al. Microstructure refinement of deformation-enhanced transformation in low carbon Steel. Chin J Mater Res,2001( 2) : 171 ( 杨正玥,胡安民,齐俊杰,等. 低碳钢形变强化相变的组织细 化. 材料研究学报,2001( 2) : 171) [7] Wu L Z,Chen J,Zhang H B. Dynamic recrystallization of austenite and grain refinement in 40Cr Steel. J Shanghai Jiaotong Univ, 2008( 5) : 786 ( 伍来智,陈军,张鸿冰. 40Cr 钢奥氏体动态再结晶及晶粒细 化. 上海交通大学学报,2008( 5) : 786) [8] Li Y,Crowther D N,Mitchell P S,et al. The evolution of micro￾structure during thin slab direct rolling processing in vanadium mi￾croalloyed steels. ISIJ Int,2002,42( 6) : 636 [9] Cracknell A,Petch N J. Frictional forces on dislocation arrays at the lower yield point in iron. Acta Metall,1955,3( 2) : 186 [10] Zou H,Kirkaldy J S. Thermodynamic calculation and experimen￾tal verification of the carbonitrid1austenite equilibrium in Ti--Nb micro-alloyed steels. Metall Trans A,1992,23( 2) : 651 [11] Cui X H,Xu Y B,Wang Z D,et al. Thermodynamic calculation and analysis of carbon-nitride precipitation behavior in Nb--Ti Micro-alloyed. Res Iron Steel,2005,32( 5) : 3 ( 崔旭辉,许云波,王昭东,等. Nb--Ti 微合金钢碳氮化物的析 出热力学模型及分析. 钢铁研究,2005,32( 5) : 3) [12] Xu Y B,Yu Y M,Wu D,et al. Thermodynamic Calculations of Precipitation Behavior in Nb Micro-alloyed Steels. Chin J Mater Res,2009,20( 1) : 104 ( 许云波,于永梅,吴迪,等. Nb 微合金钢析出行为的热力学 计算. 材料研究学报,2009,20( 1) : 104) [13] Gao N,Baker T N. Influence of AlN precipitation on thermody￾namic parameters in C--Al--V--N microalloyed steels. ISIJ Int, 1997,37( 6) : 596 [14] Turnbull D. Formation of crystal nuclei in liquid metals. J Appl Phys,1950,21( 10) : 1022 · 06 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有