第12卷第3期 智能系统学报 Vol.12 No.3 2017年6月 CAAI Transactions on Intelligent Systems Jun.2017 D0I:10.11992/is.201704022 网络出版地址:http:/kns.cmki.net/kcms/detail/23.1538.TP.20170s08.0922.010.html 利用二元拟阵K.图的一种建格方法 毛华,史明 (河北大学数学与信息科学学院,河北保定,071002)】 摘要:由于交通网络纷繁复杂,难以直观分析和直接处理。若出行者根据自己喜好和习惯决定出行策略,则需对 出行方案有清楚的了解。针对此问题,建立交通网络图一K模型,对具有带环路和重边路的复杂网络结构图,可 以完全转化为K图处理。通过概,念格理论,得到Hsse示图,方便人们对某些属性条件方案的提取,便于后续工作 处理。对K图进行研究之后发现,在特定的多个属性影响下,会形成一个三角形圈,于是结合拟阵中二元拟阵的标 准矩阵的定义,挖掘出一种特殊形式背景。根据这种形式背景的特殊性,给出基于二元拟阵的K图的概念格算法。 结合生活中的例子,验证该算法可行性。由于模型具有这种普遍性,所有结果可推广到具有类似形式背景的其他领 域研究中。 关键词:二元拟阵;标准矩阵表示;K图;二部图;图论;概念格;形式背景;Hsse示图 中图分类号:TP18文献标志码:A文章编号:1673-4785(2017)03-0333-08 中文引用格式:毛华,史明.利用二元拟阵K图的一种建格方法[J].智能系统学报,2017,12(3):333-340. 英文引用格式:MAO Hua,SHI Ming.A constructive method of lattice using the K。diagram of binary matroid[J].CAAI transactions on intelligent systems,2017,12(3):333-340. A constructive method of lattice using the K,diagram of binary matroid MAO Hua,SHI Ming School of Mathematics and Information Science,Hebei University,Baoding 071002,China) Abstract:Because of the complexity of traffic networks,it is difficult to directly analyze and deal with them.If some travelers wish to determine their travel strategy based on their preferences and habits,they should have a clear understanding of their travel plan.To address this problem,a traffic network,K model,was established in this study.It was used to elucidate how to transfer complex networks comprising loops or multiple edges to the K. diagram.With the assistance of formal concept analysis,the corresponding Hasse diagram of the K model was provided.The Hasse diagram facilitates travelers to extract some attributes under certain preconditions,after which the travelers can easily continue their work.Hence,the study of the K.diagram revealed that a triangle circle would form under some effects of specific multiple attributes.Thus,combining with the standard definition of the matrix for binary matroids,a special formal context was obtained.According to the particularity of the formal context,an algorithm was proposed based on the binary matroids for the K diagram.Utilizing an example,the feasibility of the proposed method was proven.Because the model is universal,the discussions of this research can be extended to other fields with similar formal context. Keywords:binary matroid;standard matrix representative;K.diagram;bipartite graph;graph theory;concept lattice:formal context:Hasse diagram 现代经济发展中,大城市经济圈)]内至少有一 式现已成为城市经济圈发展的增长级。实践证明, 个或多个经济发达并具有较强城市功能的中心城 经济圈中以三个地区为最好,例如京津冀经济圈、 市,以便带动周围其他城市的发展,这种经济圈模 长江三角洲经济圈、珠三角经济圈等。另外,从数 学方面分析,若将经济圈中每个城市视为一个顶 收稿日期:2017-04-19.网络出版日期:2017-05-08. 点,城市间有路可达时连接为边,则一个经济圈为 基金项目:国家自然科学基金项目(61572011). 一个图。依据图论的知识可知,在多边形图中,三 通信作者:史明.E-mail:ming1254610676@163.com第 12 卷第 3 期 智 能 系 统 学 报 Vol.12 №.3 2017 年 6 月 CAAI Transactions on Intelligent Systems Jun. 2017 DOI:10.11992 / tis. 201704022 网络出版地址:http: / / kns.cnki.net / kcms/ detail / 23.1538.TP.20170508.0922.010.html 利用二元拟阵 K n 图的一种建格方法 毛华,史明 (河北大学 数学与信息科学学院,河北 保定, 071002) 摘 要:由于交通网络纷繁复杂,难以直观分析和直接处理。 若出行者根据自己喜好和习惯决定出行策略,则需对 出行方案有清楚的了解。 针对此问题,建立交通网络图———Kn模型,对具有带环路和重边路的复杂网络结构图,可 以完全转化为 Kn图处理。 通过概念格理论,得到 Hasse 示图,方便人们对某些属性条件方案的提取,便于后续工作 处理。 对 Kn图进行研究之后发现,在特定的多个属性影响下,会形成一个三角形圈,于是结合拟阵中二元拟阵的标 准矩阵的定义,挖掘出一种特殊形式背景。 根据这种形式背景的特殊性,给出基于二元拟阵的 Kn图的概念格算法。 结合生活中的例子,验证该算法可行性。 由于模型具有这种普遍性,所有结果可推广到具有类似形式背景的其他领 域研究中。 关键词:二元拟阵;标准矩阵表示;Kn图;二部图;图论;概念格;形式背景;Hasse 示图 中图分类号:TP18 文献标志码:A 文章编号:1673-4785(2017)03-0333-08 中文引用格式:毛华,史明.利用二元拟阵 Kn 图的一种建格方法[J]. 智能系统学报, 2017, 12(3): 333-340. 英文引用格式: MAO Hua, SHI Ming. A constructive method of lattice using the Kn diagram of binary matroid [ J]. CAAI transactions on intelligent systems, 2017, 12(3): 333-340. A constructive method of lattice using the Kn diagram of binary matroid MAO Hua, SHI Ming (School of Mathematics and Information Science, Hebei University, Baoding 071002, China) Abstract:Because of the complexity of traffic networks, it is difficult to directly analyze and deal with them. If some travelers wish to determine their travel strategy based on their preferences and habits, they should have a clear understanding of their travel plan. To address this problem, a traffic network, Kn model, was established in this study. It was used to elucidate how to transfer complex networks comprising loops or multiple edges to the Kn diagram. With the assistance of formal concept analysis, the corresponding Hasse diagram of the Kn model was provided. The Hasse diagram facilitates travelers to extract some attributes under certain preconditions, after which the travelers can easily continue their work. Hence, the study of the Kn diagram revealed that a triangle circle would form under some effects of specific multiple attributes. Thus, combining with the standard definition of the matrix for binary matroids, a special formal context was obtained. According to the particularity of the formal context, an algorithm was proposed based on the binary matroids for the Kn diagram. Utilizing an example, the feasibility of the proposed method was proven. Because the model is universal, the discussions of this research can be extended to other fields with similar formal context. Keywords: binary matroid; standard matrix representative; Kn diagram; bipartite graph; graph theory; concept lattice; formal context; Hasse diagram 收稿日期:2017-04-19. 网络出版日期:2017-05-08. 基金项目:国家自然科学基金项目(61572011). 通信作者:史明. E⁃mail:ming1254610676@ 163.com. 现代经济发展中,大城市经济圈[1] 内至少有一 个或多个经济发达并具有较强城市功能的中心城 市,以便带动周围其他城市的发展,这种经济圈模 式现已成为城市经济圈发展的增长级。 实践证明, 经济圈中以三个地区为最好,例如京津冀经济圈、 长江三角洲经济圈、珠三角经济圈等。 另外,从数 学方面分析,若将经济圈中每个城市视为一个顶 点,城市间有路可达时连接为边,则一个经济圈为 一个图。 依据图论的知识可知,在多边形图中,三