正在加载图片...
SUMMARY General boundary layer equations Ou av dx dy -0 u Bu 1 aP Ou u- +V =0 ay pox dy2 ay [=a 2T +V- Ox C 2 Nusselt number for heat transfer coefficient in the thermal boundary layer Nu= =f(.ReL.P) K Local Nu= L=f(ReL.Pr) Average Many convection problems are solved using Nusselt number correlations incorporating Reynolds and Prandtl numbers.• General boundary layer equations • Nusselt number for heat transfer coefficient in the thermal boundary layer • Many convection problems are solved using Nusselt number correlations incorporating Reynolds and Prandtl numbers. SUMMARY  0      y v x u 2 2 1 y u x P y u v x u u                0   y P 2 2 2                  y u y c T y T v x T u p     Re ,Pr Average ,Re ,Pr Local * L f L f f k h L Nu f x k h L Nu    
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有