正在加载图片...
·698· 智能系统学报 第13卷 2010,34(6):1159-1161,1166 2014.234:356-367 YAO Lei,WANG Hongming,ZHENG Feng,et al.Study [13]康岚兰,董文永,田降森.一种自适应柯西变异的反向 fuzzy clustering method of air target threat assessment[J]. 学习粒子群优化算法[.计算机科学,2015,42(10): Journal of Wuhan university of technology:transportation 226-231. science&engineering,2010,346):1159-1161,1166. KANG Lanlan,DONG Wenyong,TIAN Jiangsen.Op- [2]王改革,郭立红,段红,等.基于萤火虫算法优化BP神经 position-based particle swarm optimization with adaptive 网络的目标威胁估计[).吉林大学学报:工学版,2013, 43(4):10641069 Cauchy mutation[J].Computer science,2015,42(10): 226-231. WANG Gaige,GUO Lihong,DUAN Hong,et al.Target threat assessment using glowworm swarm optimization [14]TIZHOOSH H R.Opposition-Based reinforcement learn- and BP neural network[J].Journal of Jilin university:en- ing[J].Journal of advanced computational intelligence gineering and technology edition,2013,43(4):1064-1069. and intelligent informatics,2006,10(4):578-585 [3]GANDOMI A H,ALAVI A H.Krill herd:a new bio-in- [15]武传玉,刘付显.基于模糊评判的新防空威胁评估模型 spired optimization algorithm[J].Communications in non- [).系统工程与电子技术,2004,26(8:1069-1071. linear science and numerical simulation,2012,17(12): WU Chuanyu,LIU Fuxian.New model of target threat as- 4831-4845. sessment for air defense operation based on fuzzy [4]黄璇,郭立红,李姜,等.磷虾群算法优化支持向量机的 theory[J].Systems engineering and electronics,2004, 威胁估计.光学精密工程,2016,24(6:1448-1455. 26(8):1069-1071 HUANG Xuan,GUO Lihong,LI Jiang,et al.Threat as- [16]刘海波,王和平,沈立顶.基于SAPSO优化灰色神经网 sessment of support vector machine optimized by Krill 络的空中目标威胁估计刀.西北工业大学学报,2016 Herd algorithm[J].Optics and precision engineering,2016, 246):1448-1455. 341)25-32 [5]HUANG Guangbin,CHEN Lei.Enhanced random search LIU Haibo,WANG Heping,SHEN Liding.Target threat based incremental extreme learning machinefJ].Neuro- assessment using SAPSO and grey neural network[J]. computing,.2008,71(16/18:3460-3468. Journal of northwestern polytechnical university,2016, [6]林梅金,罗飞,苏彩红,等.一种新的混合智能极限学习 34(1上25-32. 机[).控制与决策,2015,30(6):1078-1084. [17]HUANG Guangbin,ZHOU Hongming,DING Xiaojian, LIN Meijin,LUO Fei.SU Caihong,et al.An improved hy- et al.Extreme learning machine for regression and multi- brid intelligent extreme learning machine[J].Control and class classification[J].IEEE transactions on systems,man, decision,.2015,30(6):1078-1084 and cybernetics-Part B:cybernetics:a publication of the [7]HUANG Guangbin,ZHU Qinyu,SIEW C K.Extreme IEEE systems,man and cybernetics society,2012,42(2) learning machine:a new learning scheme of feedforward 513-529. neural networks[C]//Proceedings of 2004 IEEE Interna- tional Joint Conference on Neural Networks.Budapest, [18]HUANG Guangbin,DING Xiaojian,ZHOU Hongming. Hungary,2004:985-990. Optimization method based extreme learning machine for [8]杜长海.基于磷虾群算法的SVR参数选取方法及其应 classification[J].Neurocomputing,2010,74(1/2/3): 用J.自动化技术与应用,2016,35(5):10-14,19 155-163. DU Changhai.Parameters selection method for support [19]YAO Yueting,ZHAO Jianjun,WANG Yi,et al.MADM vector regression based on Krill Herd algorithm and its ap- of threat assessment with attempt of target[M]//KIM H. plication[J].Techniques of automation and applications, Advances in Technology and Management.Berlin, 2016,35(5):10-14,19. Heidelberg:Springer,2012:171-179. [9]WANG Gaige,GANDOMI A H,ALAVI A H.Stud krill [20]KOWALSKI P A,LUKASIK S.Training neural net- herd algorithm[J].Neurocomputing,2014,128:363-370. works with Krill Herd algorithm[J].Neural processing let- [10]MUKHERJEE A,MUKHERJEE V.Solution of optimal ters.2016,441:5-17. power flow using chaotic krill herd algorithm[J].Chaos, solitons and fractals,2015,78:10-21. 作者简介: [11]BOLAJI A L,AL-BETAR M A,AWADALLAH M A,et 傅蔚阳,男,1993年生,硕士研究 al.A comprehensive review:Krill Herd algorithm (KH) 生,主要研究方向为雷达对抗、人工 and its applications[J].Applied soft computing,2016,49: 智能。 437-446. [12]LI Junpeng,TANG Yinggan,HUA Changchun,et al.An improved krill herd algorithm:Krill herd with linear de- creasing step[J].Applied mathematics and computation,2010, 34(6): 1159–1161, 1166. YAO Lei, WANG Hongming, ZHENG Feng, et al. Study fuzzy clustering method of air target threat assessment[J]. Journal of Wuhan university of technology: transportation science & engineering, 2010, 34(6): 1159–1161, 1166. 王改革, 郭立红, 段红, 等. 基于萤火虫算法优化 BP 神经 网络的目标威胁估计[J]. 吉林大学学报: 工学版, 2013, 43(4): 1064–1069. WANG Gaige, GUO Lihong, DUAN Hong, et al. Target threat assessment using glowworm swarm optimization and BP neural network[J]. Journal of Jilin university: en￾gineering and technology edition, 2013, 43(4): 1064–1069. [2] GANDOMI A H, ALAVI A H. Krill herd: a new bio-in￾spired optimization algorithm[J]. Communications in non￾linear science and numerical simulation, 2012, 17(12): 4831–4845. [3] 黄璇, 郭立红, 李姜, 等. 磷虾群算法优化支持向量机的 威胁估计[J]. 光学精密工程, 2016, 24(6): 1448–1455. HUANG Xuan, GUO Lihong, LI Jiang, et al. Threat as￾sessment of support vector machine optimized by Krill Herd algorithm[J]. Optics and precision engineering, 2016, 24(6): 1448–1455. [4] HUANG Guangbin, CHEN Lei. Enhanced random search based incremental extreme learning machine[J]. Neuro￾computing, 2008, 71(16/18): 3460–3468. [5] 林梅金, 罗飞, 苏彩红, 等. 一种新的混合智能极限学习 机[J]. 控制与决策, 2015, 30(6): 1078–1084. LIN Meijin, LUO Fei, SU Caihong, et al. An improved hy￾brid intelligent extreme learning machine[J]. Control and decision, 2015, 30(6): 1078–1084. [6] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//Proceedings of 2004 IEEE Interna￾tional Joint Conference on Neural Networks. Budapest, Hungary, 2004: 985–990. [7] 杜长海. 基于磷虾群算法的 SVR 参数选取方法及其应 用[J]. 自动化技术与应用, 2016, 35(5): 10–14, 19. DU Changhai. Parameters selection method for support vector regression based on Krill Herd algorithm and its ap￾plication[J]. Techniques of automation and applications, 2016, 35(5): 10–14, 19. [8] WANG Gaige, GANDOMI A H, ALAVI A H. Stud krill herd algorithm[J]. Neurocomputing, 2014, 128: 363–370. [9] MUKHERJEE A, MUKHERJEE V. Solution of optimal power flow using chaotic krill herd algorithm[J]. Chaos, solitons and fractals, 2015, 78: 10–21. [10] BOLAJI A L, AL-BETAR M A, AWADALLAH M A, et al. A comprehensive review: Krill Herd algorithm (KH) and its applications[J]. Applied soft computing, 2016, 49: 437–446. [11] LI Junpeng, TANG Yinggan, HUA Changchun, et al. An improved krill herd algorithm: Krill herd with linear de￾creasing step[J]. Applied mathematics and computation, [12] 2014, 234: 356–367. 康岚兰, 董文永, 田降森. 一种自适应柯西变异的反向 学习粒子群优化算法[J]. 计算机科学, 2015, 42(10): 226–231. KANG Lanlan, DONG Wenyong, TIAN Jiangsen. Op￾position-based particle swarm optimization with adaptive Cauchy mutation[J]. Computer science, 2015, 42(10): 226–231. [13] TIZHOOSH H R. Opposition-Based reinforcement learn￾ing[J]. Journal of advanced computational intelligence and intelligent informatics, 2006, 10(4): 578–585. [14] 武传玉, 刘付显. 基于模糊评判的新防空威胁评估模型 [J]. 系统工程与电子技术, 2004, 26(8): 1069–1071. WU Chuanyu, LIU Fuxian. New model of target threat as￾sessment for air defense operation based on fuzzy theory[J]. Systems engineering and electronics, 2004, 26(8): 1069–1071. [15] 刘海波, 王和平, 沈立顶. 基于 SAPSO 优化灰色神经网 络的空中目标威胁估计[J]. 西北工业大学学报, 2016, 34(1): 25–32. LIU Haibo, WANG Heping, SHEN Liding. Target threat assessment using SAPSO and grey neural network[J]. Journal of northwestern polytechnical university, 2016, 34(1): 25–32. [16] HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multi￾class classification[J]. IEEE transactions on systems, man, and cybernetics-Part B: cybernetics: a publication of the IEEE systems, man and cybernetics society, 2012, 42(2): 513–529. [17] HUANG Guangbin, DING Xiaojian, ZHOU Hongming. Optimization method based extreme learning machine for classification[J]. Neurocomputing, 2010, 74(1/2/3): 155–163. [18] YAO Yueting, ZHAO Jianjun, WANG Yi, et al. MADM of threat assessment with attempt of target[M]// KIM H. Advances in Technology and Management. Berlin, Heidelberg: Springer, 2012: 171–179. [19] KOWALSKI P A, ŁUKASIK S. Training neural net￾works with Krill Herd algorithm[J]. Neural processing let￾ters, 2016, 44(1): 5–17. [20] 作者简介: 傅蔚阳,男,1993 年生,硕士研究 生,主要研究方向为雷达对抗、人工 智能。 ·698· 智 能 系 统 学 报 第 13 卷
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有